scenario-KD-PO-CDF-ALL-D2_data-cardiffnlp_tweet_sentiment_multilingual_all44

This model is a fine-tuned version of haryoaw/scenario-MDBT-TCR_data-cardiffnlp_tweet_sentiment_multilingual_all on the tweet_sentiment_multilingual dataset. It achieves the following results on the evaluation set:

  • Loss: 3.3146
  • Accuracy: 0.5999
  • F1: 0.5999

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 44
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
4.444 1.09 500 3.3357 0.5590 0.5595
3.1285 2.17 1000 3.1819 0.5818 0.5811
2.2768 3.26 1500 3.4078 0.5799 0.5754
1.6869 4.35 2000 3.4404 0.5729 0.5727
1.3429 5.43 2500 3.3948 0.5826 0.5832
1.1198 6.52 3000 3.6492 0.5675 0.5686
0.9743 7.61 3500 3.5282 0.5764 0.5777
0.8843 8.7 4000 3.3969 0.5775 0.5743
0.7859 9.78 4500 3.2240 0.5802 0.5794
0.722 10.87 5000 3.3416 0.5806 0.5786
0.6697 11.96 5500 3.2493 0.5806 0.5824
0.6214 13.04 6000 3.2909 0.5841 0.5806
0.5762 14.13 6500 3.3289 0.5760 0.5775
0.5513 15.22 7000 3.2534 0.5876 0.5843
0.5138 16.3 7500 3.4835 0.5849 0.5857
0.4968 17.39 8000 3.2355 0.5860 0.5855
0.4842 18.48 8500 3.3245 0.5849 0.5862
0.4552 19.57 9000 3.3149 0.5876 0.5869
0.4492 20.65 9500 3.2398 0.5787 0.5797
0.43 21.74 10000 3.3776 0.5775 0.5769
0.4174 22.83 10500 3.3436 0.5910 0.5908
0.4145 23.91 11000 3.2675 0.5953 0.5948
0.3974 25.0 11500 3.2194 0.5922 0.5934
0.3884 26.09 12000 3.1719 0.5899 0.5909
0.3863 27.17 12500 3.4059 0.5891 0.5877
0.3713 28.26 13000 3.3166 0.5980 0.5952
0.3707 29.35 13500 3.1796 0.5957 0.5966
0.3719 30.43 14000 3.3469 0.5938 0.5939
0.3593 31.52 14500 3.2776 0.6046 0.6036
0.3576 32.61 15000 3.4264 0.5914 0.5917
0.353 33.7 15500 3.3841 0.5949 0.5952
0.3512 34.78 16000 3.4532 0.5953 0.5937
0.3449 35.87 16500 3.3434 0.5980 0.5988
0.3456 36.96 17000 3.5318 0.5918 0.5900
0.3433 38.04 17500 3.2213 0.6069 0.6074
0.3392 39.13 18000 3.3987 0.5992 0.5986
0.3391 40.22 18500 3.3773 0.5953 0.5952
0.3327 41.3 19000 3.3447 0.5914 0.5919
0.3336 42.39 19500 3.4175 0.5972 0.5971
0.326 43.48 20000 3.3289 0.6026 0.6029
0.3344 44.57 20500 3.3741 0.5992 0.5993
0.3255 45.65 21000 3.3618 0.5988 0.5986
0.3283 46.74 21500 3.4027 0.5999 0.6003
0.3236 47.83 22000 3.3338 0.6046 0.6048
0.3254 48.91 22500 3.3374 0.5965 0.5973
0.3247 50.0 23000 3.3146 0.5999 0.5999

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
1
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for haryoaw/scenario-KD-PO-CDF-ALL-D2_data-cardiffnlp_tweet_sentiment_multilingual_all44

Finetuned
(13)
this model