scenario-KD-PO-MSV-EN-CL-D2_data-en-massive_all_1_144
This model is a fine-tuned version of haryoaw/scenario-MDBT-TCR_data-cl-massive_all_1_1 on the massive dataset. It achieves the following results on the evaluation set:
- Loss: 11.8220
- Accuracy: 0.4279
- F1: 0.4121
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 44
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
No log | 0.28 | 100 | 12.4285 | 0.1433 | 0.0512 |
No log | 0.56 | 200 | 11.0024 | 0.3202 | 0.2004 |
No log | 0.83 | 300 | 10.2163 | 0.3581 | 0.2694 |
No log | 1.11 | 400 | 10.2991 | 0.3690 | 0.3079 |
6.8116 | 1.39 | 500 | 9.8243 | 0.3839 | 0.3435 |
6.8116 | 1.67 | 600 | 11.2641 | 0.3606 | 0.3247 |
6.8116 | 1.94 | 700 | 10.3190 | 0.3851 | 0.3485 |
6.8116 | 2.22 | 800 | 10.3062 | 0.4031 | 0.3666 |
6.8116 | 2.5 | 900 | 10.6951 | 0.3961 | 0.3569 |
2.6735 | 2.78 | 1000 | 9.7089 | 0.4174 | 0.3764 |
2.6735 | 3.06 | 1100 | 11.1929 | 0.3794 | 0.3381 |
2.6735 | 3.33 | 1200 | 12.2376 | 0.3596 | 0.3533 |
2.6735 | 3.61 | 1300 | 11.6097 | 0.3843 | 0.3389 |
2.6735 | 3.89 | 1400 | 12.9304 | 0.3542 | 0.3393 |
1.7404 | 4.17 | 1500 | 11.2853 | 0.4047 | 0.3643 |
1.7404 | 4.44 | 1600 | 11.8882 | 0.3952 | 0.3663 |
1.7404 | 4.72 | 1700 | 12.6707 | 0.3697 | 0.3461 |
1.7404 | 5.0 | 1800 | 12.5911 | 0.3778 | 0.3586 |
1.7404 | 5.28 | 1900 | 12.2372 | 0.3876 | 0.3636 |
1.2139 | 5.56 | 2000 | 13.7821 | 0.3691 | 0.3591 |
1.2139 | 5.83 | 2100 | 13.3563 | 0.3712 | 0.3682 |
1.2139 | 6.11 | 2200 | 13.6273 | 0.3692 | 0.3702 |
1.2139 | 6.39 | 2300 | 13.3701 | 0.3780 | 0.3645 |
1.2139 | 6.67 | 2400 | 13.4374 | 0.3802 | 0.3644 |
0.9583 | 6.94 | 2500 | 13.0415 | 0.3766 | 0.3572 |
0.9583 | 7.22 | 2600 | 12.2692 | 0.3994 | 0.3723 |
0.9583 | 7.5 | 2700 | 13.0153 | 0.3798 | 0.3610 |
0.9583 | 7.78 | 2800 | 13.5494 | 0.3779 | 0.3576 |
0.9583 | 8.06 | 2900 | 12.7093 | 0.3921 | 0.3723 |
0.7598 | 8.33 | 3000 | 15.0333 | 0.3523 | 0.3566 |
0.7598 | 8.61 | 3100 | 14.0520 | 0.3699 | 0.3675 |
0.7598 | 8.89 | 3200 | 13.2860 | 0.3828 | 0.3733 |
0.7598 | 9.17 | 3300 | 13.1891 | 0.3863 | 0.3715 |
0.7598 | 9.44 | 3400 | 13.7420 | 0.3739 | 0.3654 |
0.6633 | 9.72 | 3500 | 13.6071 | 0.3789 | 0.3715 |
0.6633 | 10.0 | 3600 | 12.7524 | 0.3865 | 0.3769 |
0.6633 | 10.28 | 3700 | 12.6783 | 0.3976 | 0.3893 |
0.6633 | 10.56 | 3800 | 13.6121 | 0.3756 | 0.3706 |
0.6633 | 10.83 | 3900 | 12.4699 | 0.4064 | 0.3983 |
0.5962 | 11.11 | 4000 | 12.5135 | 0.4031 | 0.3884 |
0.5962 | 11.39 | 4100 | 14.0802 | 0.3692 | 0.3748 |
0.5962 | 11.67 | 4200 | 12.0230 | 0.4129 | 0.3988 |
0.5962 | 11.94 | 4300 | 13.3263 | 0.3832 | 0.3845 |
0.5962 | 12.22 | 4400 | 12.9188 | 0.3991 | 0.3804 |
0.5363 | 12.5 | 4500 | 12.1398 | 0.4067 | 0.3917 |
0.5363 | 12.78 | 4600 | 13.3469 | 0.3868 | 0.3778 |
0.5363 | 13.06 | 4700 | 12.7122 | 0.3912 | 0.3814 |
0.5363 | 13.33 | 4800 | 13.4259 | 0.3855 | 0.3760 |
0.5363 | 13.61 | 4900 | 12.8922 | 0.3973 | 0.3830 |
0.5077 | 13.89 | 5000 | 12.4985 | 0.4065 | 0.3983 |
0.5077 | 14.17 | 5100 | 12.3003 | 0.4096 | 0.3962 |
0.5077 | 14.44 | 5200 | 12.7712 | 0.4089 | 0.3995 |
0.5077 | 14.72 | 5300 | 12.2024 | 0.4155 | 0.4029 |
0.5077 | 15.0 | 5400 | 12.0136 | 0.4214 | 0.4079 |
0.4741 | 15.28 | 5500 | 12.4490 | 0.4086 | 0.3918 |
0.4741 | 15.56 | 5600 | 12.2443 | 0.4131 | 0.4004 |
0.4741 | 15.83 | 5700 | 11.9125 | 0.4265 | 0.4132 |
0.4741 | 16.11 | 5800 | 12.1195 | 0.4160 | 0.4013 |
0.4741 | 16.39 | 5900 | 12.7143 | 0.4101 | 0.4014 |
0.4451 | 16.67 | 6000 | 12.2924 | 0.4146 | 0.4016 |
0.4451 | 16.94 | 6100 | 11.6365 | 0.4283 | 0.4073 |
0.4451 | 17.22 | 6200 | 11.5866 | 0.4213 | 0.4020 |
0.4451 | 17.5 | 6300 | 11.7064 | 0.4257 | 0.4069 |
0.4451 | 17.78 | 6400 | 12.3482 | 0.4104 | 0.3997 |
0.4282 | 18.06 | 6500 | 11.9962 | 0.4217 | 0.4051 |
0.4282 | 18.33 | 6600 | 12.4831 | 0.4135 | 0.4025 |
0.4282 | 18.61 | 6700 | 12.3656 | 0.4125 | 0.4056 |
0.4282 | 18.89 | 6800 | 12.3032 | 0.4137 | 0.3984 |
0.4282 | 19.17 | 6900 | 11.7594 | 0.4298 | 0.4118 |
0.4082 | 19.44 | 7000 | 11.5141 | 0.4324 | 0.4158 |
0.4082 | 19.72 | 7100 | 11.7421 | 0.4274 | 0.4178 |
0.4082 | 20.0 | 7200 | 11.6144 | 0.4311 | 0.4125 |
0.4082 | 20.28 | 7300 | 12.2621 | 0.4192 | 0.4069 |
0.4082 | 20.56 | 7400 | 12.0426 | 0.4171 | 0.4043 |
0.3952 | 20.83 | 7500 | 11.6613 | 0.4243 | 0.4085 |
0.3952 | 21.11 | 7600 | 12.0199 | 0.4193 | 0.4029 |
0.3952 | 21.39 | 7700 | 12.5562 | 0.4112 | 0.4052 |
0.3952 | 21.67 | 7800 | 12.1838 | 0.4206 | 0.4086 |
0.3952 | 21.94 | 7900 | 12.1778 | 0.4175 | 0.4038 |
0.3855 | 22.22 | 8000 | 11.7222 | 0.4285 | 0.4131 |
0.3855 | 22.5 | 8100 | 11.9441 | 0.4243 | 0.4086 |
0.3855 | 22.78 | 8200 | 11.9899 | 0.4257 | 0.4120 |
0.3855 | 23.06 | 8300 | 12.3196 | 0.4207 | 0.4143 |
0.3855 | 23.33 | 8400 | 11.8328 | 0.4268 | 0.4092 |
0.373 | 23.61 | 8500 | 11.8007 | 0.4300 | 0.4140 |
0.373 | 23.89 | 8600 | 11.9800 | 0.4222 | 0.4089 |
0.373 | 24.17 | 8700 | 12.1881 | 0.4192 | 0.4057 |
0.373 | 24.44 | 8800 | 12.3038 | 0.4163 | 0.4081 |
0.373 | 24.72 | 8900 | 12.1807 | 0.4210 | 0.4073 |
0.3656 | 25.0 | 9000 | 11.7511 | 0.4268 | 0.4108 |
0.3656 | 25.28 | 9100 | 11.9884 | 0.4218 | 0.4088 |
0.3656 | 25.56 | 9200 | 11.7588 | 0.4264 | 0.4081 |
0.3656 | 25.83 | 9300 | 11.6659 | 0.4289 | 0.4105 |
0.3656 | 26.11 | 9400 | 12.1028 | 0.4207 | 0.4068 |
0.3573 | 26.39 | 9500 | 11.6687 | 0.4317 | 0.4147 |
0.3573 | 26.67 | 9600 | 11.7249 | 0.4279 | 0.4109 |
0.3573 | 26.94 | 9700 | 11.6570 | 0.4273 | 0.4104 |
0.3573 | 27.22 | 9800 | 11.6475 | 0.4309 | 0.4135 |
0.3573 | 27.5 | 9900 | 11.7960 | 0.4262 | 0.4116 |
0.3518 | 27.78 | 10000 | 11.7591 | 0.4263 | 0.4123 |
0.3518 | 28.06 | 10100 | 11.9438 | 0.4225 | 0.4084 |
0.3518 | 28.33 | 10200 | 11.8072 | 0.4256 | 0.4116 |
0.3518 | 28.61 | 10300 | 11.8760 | 0.4254 | 0.4110 |
0.3518 | 28.89 | 10400 | 12.0118 | 0.4214 | 0.4089 |
0.3511 | 29.17 | 10500 | 11.9257 | 0.4251 | 0.4115 |
0.3511 | 29.44 | 10600 | 11.9128 | 0.4250 | 0.4101 |
0.3511 | 29.72 | 10700 | 11.8159 | 0.4270 | 0.4117 |
0.3511 | 30.0 | 10800 | 11.8220 | 0.4279 | 0.4121 |
Framework versions
- Transformers 4.33.3
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.13.3
- Downloads last month
- 1
Model tree for haryoaw/scenario-KD-PO-MSV-EN-CL-D2_data-en-massive_all_1_144
Base model
microsoft/mdeberta-v3-base
Finetuned
haryoaw/scenario-MDBT-TCR-MSV-CL