scenario-KD-PO-MSV-EN-CL-D2_data-en-massive_all_1_144

This model is a fine-tuned version of haryoaw/scenario-MDBT-TCR_data-cl-massive_all_1_1 on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 11.8220
  • Accuracy: 0.4279
  • F1: 0.4121

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 44
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 0.28 100 12.4285 0.1433 0.0512
No log 0.56 200 11.0024 0.3202 0.2004
No log 0.83 300 10.2163 0.3581 0.2694
No log 1.11 400 10.2991 0.3690 0.3079
6.8116 1.39 500 9.8243 0.3839 0.3435
6.8116 1.67 600 11.2641 0.3606 0.3247
6.8116 1.94 700 10.3190 0.3851 0.3485
6.8116 2.22 800 10.3062 0.4031 0.3666
6.8116 2.5 900 10.6951 0.3961 0.3569
2.6735 2.78 1000 9.7089 0.4174 0.3764
2.6735 3.06 1100 11.1929 0.3794 0.3381
2.6735 3.33 1200 12.2376 0.3596 0.3533
2.6735 3.61 1300 11.6097 0.3843 0.3389
2.6735 3.89 1400 12.9304 0.3542 0.3393
1.7404 4.17 1500 11.2853 0.4047 0.3643
1.7404 4.44 1600 11.8882 0.3952 0.3663
1.7404 4.72 1700 12.6707 0.3697 0.3461
1.7404 5.0 1800 12.5911 0.3778 0.3586
1.7404 5.28 1900 12.2372 0.3876 0.3636
1.2139 5.56 2000 13.7821 0.3691 0.3591
1.2139 5.83 2100 13.3563 0.3712 0.3682
1.2139 6.11 2200 13.6273 0.3692 0.3702
1.2139 6.39 2300 13.3701 0.3780 0.3645
1.2139 6.67 2400 13.4374 0.3802 0.3644
0.9583 6.94 2500 13.0415 0.3766 0.3572
0.9583 7.22 2600 12.2692 0.3994 0.3723
0.9583 7.5 2700 13.0153 0.3798 0.3610
0.9583 7.78 2800 13.5494 0.3779 0.3576
0.9583 8.06 2900 12.7093 0.3921 0.3723
0.7598 8.33 3000 15.0333 0.3523 0.3566
0.7598 8.61 3100 14.0520 0.3699 0.3675
0.7598 8.89 3200 13.2860 0.3828 0.3733
0.7598 9.17 3300 13.1891 0.3863 0.3715
0.7598 9.44 3400 13.7420 0.3739 0.3654
0.6633 9.72 3500 13.6071 0.3789 0.3715
0.6633 10.0 3600 12.7524 0.3865 0.3769
0.6633 10.28 3700 12.6783 0.3976 0.3893
0.6633 10.56 3800 13.6121 0.3756 0.3706
0.6633 10.83 3900 12.4699 0.4064 0.3983
0.5962 11.11 4000 12.5135 0.4031 0.3884
0.5962 11.39 4100 14.0802 0.3692 0.3748
0.5962 11.67 4200 12.0230 0.4129 0.3988
0.5962 11.94 4300 13.3263 0.3832 0.3845
0.5962 12.22 4400 12.9188 0.3991 0.3804
0.5363 12.5 4500 12.1398 0.4067 0.3917
0.5363 12.78 4600 13.3469 0.3868 0.3778
0.5363 13.06 4700 12.7122 0.3912 0.3814
0.5363 13.33 4800 13.4259 0.3855 0.3760
0.5363 13.61 4900 12.8922 0.3973 0.3830
0.5077 13.89 5000 12.4985 0.4065 0.3983
0.5077 14.17 5100 12.3003 0.4096 0.3962
0.5077 14.44 5200 12.7712 0.4089 0.3995
0.5077 14.72 5300 12.2024 0.4155 0.4029
0.5077 15.0 5400 12.0136 0.4214 0.4079
0.4741 15.28 5500 12.4490 0.4086 0.3918
0.4741 15.56 5600 12.2443 0.4131 0.4004
0.4741 15.83 5700 11.9125 0.4265 0.4132
0.4741 16.11 5800 12.1195 0.4160 0.4013
0.4741 16.39 5900 12.7143 0.4101 0.4014
0.4451 16.67 6000 12.2924 0.4146 0.4016
0.4451 16.94 6100 11.6365 0.4283 0.4073
0.4451 17.22 6200 11.5866 0.4213 0.4020
0.4451 17.5 6300 11.7064 0.4257 0.4069
0.4451 17.78 6400 12.3482 0.4104 0.3997
0.4282 18.06 6500 11.9962 0.4217 0.4051
0.4282 18.33 6600 12.4831 0.4135 0.4025
0.4282 18.61 6700 12.3656 0.4125 0.4056
0.4282 18.89 6800 12.3032 0.4137 0.3984
0.4282 19.17 6900 11.7594 0.4298 0.4118
0.4082 19.44 7000 11.5141 0.4324 0.4158
0.4082 19.72 7100 11.7421 0.4274 0.4178
0.4082 20.0 7200 11.6144 0.4311 0.4125
0.4082 20.28 7300 12.2621 0.4192 0.4069
0.4082 20.56 7400 12.0426 0.4171 0.4043
0.3952 20.83 7500 11.6613 0.4243 0.4085
0.3952 21.11 7600 12.0199 0.4193 0.4029
0.3952 21.39 7700 12.5562 0.4112 0.4052
0.3952 21.67 7800 12.1838 0.4206 0.4086
0.3952 21.94 7900 12.1778 0.4175 0.4038
0.3855 22.22 8000 11.7222 0.4285 0.4131
0.3855 22.5 8100 11.9441 0.4243 0.4086
0.3855 22.78 8200 11.9899 0.4257 0.4120
0.3855 23.06 8300 12.3196 0.4207 0.4143
0.3855 23.33 8400 11.8328 0.4268 0.4092
0.373 23.61 8500 11.8007 0.4300 0.4140
0.373 23.89 8600 11.9800 0.4222 0.4089
0.373 24.17 8700 12.1881 0.4192 0.4057
0.373 24.44 8800 12.3038 0.4163 0.4081
0.373 24.72 8900 12.1807 0.4210 0.4073
0.3656 25.0 9000 11.7511 0.4268 0.4108
0.3656 25.28 9100 11.9884 0.4218 0.4088
0.3656 25.56 9200 11.7588 0.4264 0.4081
0.3656 25.83 9300 11.6659 0.4289 0.4105
0.3656 26.11 9400 12.1028 0.4207 0.4068
0.3573 26.39 9500 11.6687 0.4317 0.4147
0.3573 26.67 9600 11.7249 0.4279 0.4109
0.3573 26.94 9700 11.6570 0.4273 0.4104
0.3573 27.22 9800 11.6475 0.4309 0.4135
0.3573 27.5 9900 11.7960 0.4262 0.4116
0.3518 27.78 10000 11.7591 0.4263 0.4123
0.3518 28.06 10100 11.9438 0.4225 0.4084
0.3518 28.33 10200 11.8072 0.4256 0.4116
0.3518 28.61 10300 11.8760 0.4254 0.4110
0.3518 28.89 10400 12.0118 0.4214 0.4089
0.3511 29.17 10500 11.9257 0.4251 0.4115
0.3511 29.44 10600 11.9128 0.4250 0.4101
0.3511 29.72 10700 11.8159 0.4270 0.4117
0.3511 30.0 10800 11.8220 0.4279 0.4121

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
1
Inference API
Unable to determine this model's library. Check the docs .

Model tree for haryoaw/scenario-KD-PO-MSV-EN-CL-D2_data-en-massive_all_1_144

Finetuned
(22)
this model