scenario-KD-PR-CDF-ALL-D2_data-cardiffnlp_tweet_sentiment_multilingual_all44

This model is a fine-tuned version of haryoaw/scenario-MDBT-TCR_data-cardiffnlp_tweet_sentiment_multilingual_all on the tweet_sentiment_multilingual dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2156
  • Accuracy: 0.5899
  • F1: 0.5895

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 44
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
1.2282 1.09 500 1.2134 0.5467 0.5385
1.1368 2.17 1000 1.1933 0.5733 0.5743
1.0779 3.26 1500 1.2131 0.5629 0.5597
1.0308 4.35 2000 1.2485 0.5602 0.5608
0.9977 5.43 2500 1.2645 0.5567 0.5583
0.9742 6.52 3000 1.2412 0.5606 0.5575
0.953 7.61 3500 1.2490 0.5710 0.5675
0.9419 8.7 4000 1.2480 0.5718 0.5733
0.9274 9.78 4500 1.2595 0.5629 0.5645
0.9198 10.87 5000 1.2329 0.5841 0.5845
0.913 11.96 5500 1.2359 0.5733 0.5745
0.9076 13.04 6000 1.2598 0.5729 0.5743
0.8995 14.13 6500 1.2409 0.5799 0.5753
0.8977 15.22 7000 1.2499 0.5752 0.5770
0.8914 16.3 7500 1.2278 0.5802 0.5796
0.8882 17.39 8000 1.2295 0.5748 0.5749
0.886 18.48 8500 1.2371 0.5737 0.5684
0.8802 19.57 9000 1.2394 0.5664 0.5581
0.8798 20.65 9500 1.2500 0.5741 0.5734
0.8768 21.74 10000 1.2488 0.5702 0.5722
0.8734 22.83 10500 1.2380 0.5764 0.5773
0.8719 23.91 11000 1.2147 0.5949 0.5894
0.8693 25.0 11500 1.2217 0.5853 0.5841
0.8672 26.09 12000 1.2320 0.5814 0.5806
0.8667 27.17 12500 1.2363 0.5756 0.5745
0.8643 28.26 13000 1.2211 0.5845 0.5826
0.8632 29.35 13500 1.2325 0.5841 0.5850
0.8608 30.43 14000 1.2310 0.5810 0.5803
0.8597 31.52 14500 1.2260 0.5868 0.5869
0.8581 32.61 15000 1.2221 0.5891 0.5899
0.8563 33.7 15500 1.2233 0.5907 0.5892
0.8569 34.78 16000 1.2204 0.5914 0.5903
0.8549 35.87 16500 1.2245 0.5872 0.5878
0.8542 36.96 17000 1.2278 0.5806 0.5799
0.8534 38.04 17500 1.2080 0.5968 0.5980
0.8526 39.13 18000 1.2141 0.5833 0.5769
0.8516 40.22 18500 1.2347 0.5772 0.5791
0.8512 41.3 19000 1.2305 0.5779 0.5799
0.8513 42.39 19500 1.2168 0.5880 0.5898
0.8491 43.48 20000 1.2221 0.5841 0.5848
0.8493 44.57 20500 1.2172 0.5853 0.5860
0.8485 45.65 21000 1.2120 0.5922 0.5929
0.8484 46.74 21500 1.2123 0.5945 0.5953
0.8478 47.83 22000 1.2148 0.5887 0.5876
0.848 48.91 22500 1.2163 0.5864 0.5864
0.8478 50.0 23000 1.2156 0.5899 0.5895

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
1
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for haryoaw/scenario-KD-PR-CDF-ALL-D2_data-cardiffnlp_tweet_sentiment_multilingual_all44

Finetuned
(13)
this model