scenario-KD-PR-CDF-ALL-D2_data-cardiffnlp_tweet_sentiment_multilingual_all66

This model is a fine-tuned version of haryoaw/scenario-MDBT-TCR_data-cardiffnlp_tweet_sentiment_multilingual_all on the tweet_sentiment_multilingual dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2134
  • Accuracy: 0.5976
  • F1: 0.5983

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 66
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
1.2324 1.09 500 1.1970 0.5390 0.5349
1.1375 2.17 1000 1.1962 0.5683 0.5697
1.0818 3.26 1500 1.2071 0.5864 0.5880
1.0336 4.35 2000 1.2252 0.5829 0.5784
0.9993 5.43 2500 1.2483 0.5718 0.5739
0.9736 6.52 3000 1.2370 0.5679 0.5704
0.9561 7.61 3500 1.2357 0.5787 0.5793
0.9417 8.7 4000 1.2761 0.5575 0.5567
0.9318 9.78 4500 1.2588 0.5752 0.5752
0.9229 10.87 5000 1.2304 0.5748 0.5759
0.9148 11.96 5500 1.2564 0.5741 0.5759
0.9085 13.04 6000 1.2593 0.5714 0.5695
0.9053 14.13 6500 1.2399 0.5694 0.5694
0.8993 15.22 7000 1.2473 0.5702 0.5710
0.898 16.3 7500 1.2271 0.5787 0.5800
0.8894 17.39 8000 1.2384 0.5691 0.5686
0.8894 18.48 8500 1.2441 0.5660 0.5669
0.8853 19.57 9000 1.2530 0.5725 0.5741
0.8828 20.65 9500 1.2464 0.5698 0.5712
0.8785 21.74 10000 1.2423 0.5860 0.5871
0.877 22.83 10500 1.2577 0.5664 0.5668
0.8758 23.91 11000 1.2432 0.5818 0.5808
0.8731 25.0 11500 1.2480 0.5660 0.5678
0.8715 26.09 12000 1.2488 0.5544 0.5550
0.8688 27.17 12500 1.2414 0.5768 0.5786
0.8667 28.26 13000 1.2339 0.5756 0.5711
0.8661 29.35 13500 1.2204 0.5903 0.5911
0.8644 30.43 14000 1.2427 0.5656 0.5673
0.862 31.52 14500 1.2421 0.5799 0.5810
0.8611 32.61 15000 1.2375 0.5764 0.5759
0.8612 33.7 15500 1.2184 0.6003 0.5975
0.8583 34.78 16000 1.2345 0.5841 0.5851
0.8585 35.87 16500 1.2324 0.5841 0.5849
0.8569 36.96 17000 1.2308 0.5818 0.5817
0.8553 38.04 17500 1.2209 0.5968 0.5949
0.8547 39.13 18000 1.2301 0.5853 0.5859
0.8547 40.22 18500 1.2211 0.5887 0.5874
0.8532 41.3 19000 1.2224 0.5895 0.5912
0.853 42.39 19500 1.2245 0.5829 0.5844
0.8523 43.48 20000 1.2187 0.5945 0.5947
0.8521 44.57 20500 1.2141 0.5965 0.5959
0.851 45.65 21000 1.2122 0.6011 0.6016
0.8512 46.74 21500 1.2176 0.5941 0.5944
0.8507 47.83 22000 1.2161 0.5934 0.5943
0.8503 48.91 22500 1.2157 0.5957 0.5966
0.8501 50.0 23000 1.2134 0.5976 0.5983

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
1
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for haryoaw/scenario-KD-PR-CDF-ALL-D2_data-cardiffnlp_tweet_sentiment_multilingual_all66

Finetuned
(13)
this model