scenario-KD-PR-MSV-D2_data-cl-massive_all_1_144

This model is a fine-tuned version of haryoaw/scenario-MDBT-TCR_data-cl-massive_all_1_1 on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 2.5342
  • Accuracy: 0.6242
  • F1: 0.5945

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 44
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
1.3572 0.56 5000 2.3093 0.6266 0.5756
1.1368 1.11 10000 2.3610 0.6232 0.5831
1.0884 1.67 15000 2.3177 0.6323 0.5864
0.9993 2.22 20000 2.3903 0.6208 0.5754
0.9971 2.78 25000 2.3353 0.6305 0.5819
0.9487 3.33 30000 2.3824 0.6281 0.5838
0.9282 3.89 35000 2.4776 0.6199 0.5797
0.9133 4.45 40000 2.4677 0.6207 0.5774
0.921 5.0 45000 2.4799 0.6195 0.5889
0.8781 5.56 50000 2.5276 0.6145 0.5823
0.8679 6.11 55000 2.5109 0.6219 0.5837
0.8667 6.67 60000 2.4956 0.6257 0.5863
0.8541 7.23 65000 2.5621 0.6089 0.5827
0.858 7.78 70000 2.4640 0.6258 0.5818
0.8341 8.34 75000 2.5379 0.6147 0.5771
0.8431 8.89 80000 2.5004 0.6307 0.5894
0.8409 9.45 85000 2.6250 0.6013 0.5683
0.8317 10.0 90000 2.5641 0.6205 0.5883
0.8264 10.56 95000 2.5379 0.6169 0.5787
0.8159 11.12 100000 2.4846 0.6287 0.5892
0.8211 11.67 105000 2.4920 0.6260 0.5834
0.8127 12.23 110000 2.5126 0.6268 0.5904
0.8176 12.78 115000 2.4977 0.6298 0.5907
0.8135 13.34 120000 2.6144 0.6130 0.5816
0.8092 13.9 125000 2.6534 0.6015 0.5770
0.8057 14.45 130000 2.6538 0.5992 0.5661
0.8106 15.01 135000 2.5595 0.6138 0.5671
0.8041 15.56 140000 2.6846 0.6044 0.5753
0.8008 16.12 145000 2.6878 0.6045 0.5876
0.7928 16.67 150000 2.6002 0.6144 0.5883
0.792 17.23 155000 2.5880 0.6171 0.5801
0.7953 17.79 160000 2.5090 0.6269 0.5887
0.7888 18.34 165000 2.5957 0.6162 0.5906
0.7938 18.9 170000 2.5766 0.6192 0.5725
0.7909 19.45 175000 2.5189 0.6237 0.5904
0.7864 20.01 180000 2.5648 0.6172 0.5840
0.7869 20.56 185000 2.5519 0.6210 0.5910
0.7833 21.12 190000 2.6989 0.5995 0.5803
0.7835 21.68 195000 2.5599 0.6151 0.5815
0.7803 22.23 200000 2.5249 0.6231 0.5893
0.7837 22.79 205000 2.5989 0.6135 0.5859
0.7793 23.34 210000 2.5693 0.6210 0.5930
0.7851 23.9 215000 2.5545 0.6208 0.5893
0.7799 24.46 220000 2.5639 0.6178 0.5884
0.7791 25.01 225000 2.5613 0.6200 0.5934
0.775 25.57 230000 2.5726 0.6199 0.5958
0.7747 26.12 235000 2.5184 0.6237 0.5914
0.775 26.68 240000 2.5404 0.6226 0.5961
0.7749 27.23 245000 2.5392 0.6202 0.5874
0.7767 27.79 250000 2.5781 0.6194 0.5953
0.7762 28.35 255000 2.4980 0.6290 0.5953
0.7737 28.9 260000 2.5199 0.6239 0.5938
0.7708 29.46 265000 2.5342 0.6242 0.5945

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
1
Inference API
Unable to determine this model's library. Check the docs .

Model tree for haryoaw/scenario-KD-PR-MSV-D2_data-cl-massive_all_1_144

Finetuned
(22)
this model