scenario-KD-PR-MSV-D2_data-cl-massive_all_1_155
This model is a fine-tuned version of haryoaw/scenario-MDBT-TCR_data-cl-massive_all_1_1 on the massive dataset. It achieves the following results on the evaluation set:
- Loss: 2.5659
- Accuracy: 0.6234
- F1: 0.5935
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 55
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
1.3685 | 0.56 | 5000 | 2.3825 | 0.6101 | 0.5721 |
1.1362 | 1.11 | 10000 | 2.3303 | 0.6277 | 0.5814 |
1.1011 | 1.67 | 15000 | 2.2524 | 0.6458 | 0.5921 |
1.0061 | 2.22 | 20000 | 2.3519 | 0.6330 | 0.5861 |
1.004 | 2.78 | 25000 | 2.3514 | 0.6260 | 0.5797 |
0.9543 | 3.33 | 30000 | 2.4451 | 0.6188 | 0.5833 |
0.957 | 3.89 | 35000 | 2.3458 | 0.6352 | 0.5832 |
0.9182 | 4.45 | 40000 | 2.4666 | 0.6177 | 0.5823 |
0.9207 | 5.0 | 45000 | 2.4348 | 0.6297 | 0.5832 |
0.8814 | 5.56 | 50000 | 2.5433 | 0.6051 | 0.5682 |
0.8671 | 6.11 | 55000 | 2.5489 | 0.6119 | 0.5763 |
0.8732 | 6.67 | 60000 | 2.4481 | 0.6266 | 0.5702 |
0.8564 | 7.23 | 65000 | 2.5152 | 0.6242 | 0.5843 |
0.8639 | 7.78 | 70000 | 2.5782 | 0.6095 | 0.5733 |
0.8547 | 8.34 | 75000 | 2.5712 | 0.6124 | 0.5778 |
0.8539 | 8.89 | 80000 | 2.5092 | 0.6143 | 0.5676 |
0.8379 | 9.45 | 85000 | 2.5264 | 0.6182 | 0.5763 |
0.8388 | 10.0 | 90000 | 2.5294 | 0.6244 | 0.5873 |
0.8348 | 10.56 | 95000 | 2.6556 | 0.6065 | 0.5799 |
0.8216 | 11.12 | 100000 | 2.5251 | 0.6213 | 0.5724 |
0.8285 | 11.67 | 105000 | 2.5312 | 0.6201 | 0.5772 |
0.8187 | 12.23 | 110000 | 2.6448 | 0.6051 | 0.5773 |
0.8244 | 12.78 | 115000 | 2.5533 | 0.6168 | 0.5823 |
0.8135 | 13.34 | 120000 | 2.5669 | 0.6161 | 0.5743 |
0.8185 | 13.9 | 125000 | 2.5724 | 0.6178 | 0.5839 |
0.8147 | 14.45 | 130000 | 2.5826 | 0.6152 | 0.5770 |
0.8122 | 15.01 | 135000 | 2.5439 | 0.6247 | 0.5838 |
0.8045 | 15.56 | 140000 | 2.5643 | 0.6169 | 0.5721 |
0.7994 | 16.12 | 145000 | 2.5887 | 0.6196 | 0.5782 |
0.8002 | 16.67 | 150000 | 2.5524 | 0.6195 | 0.5845 |
0.7976 | 17.23 | 155000 | 2.6154 | 0.6112 | 0.5819 |
0.798 | 17.79 | 160000 | 2.5928 | 0.6148 | 0.5824 |
0.7995 | 18.34 | 165000 | 2.6006 | 0.6140 | 0.5811 |
0.801 | 18.9 | 170000 | 2.5610 | 0.6212 | 0.5863 |
0.7937 | 19.45 | 175000 | 2.5948 | 0.6145 | 0.5873 |
0.7965 | 20.01 | 180000 | 2.6013 | 0.6136 | 0.5859 |
0.7911 | 20.56 | 185000 | 2.6488 | 0.6106 | 0.5906 |
0.7873 | 21.12 | 190000 | 2.6141 | 0.6134 | 0.5810 |
0.7931 | 21.68 | 195000 | 2.6865 | 0.6010 | 0.5795 |
0.7866 | 22.23 | 200000 | 2.5861 | 0.6160 | 0.5810 |
0.7867 | 22.79 | 205000 | 2.5334 | 0.6224 | 0.5886 |
0.7841 | 23.34 | 210000 | 2.5656 | 0.6272 | 0.5909 |
0.7897 | 23.9 | 215000 | 2.4915 | 0.6307 | 0.5949 |
0.7857 | 24.46 | 220000 | 2.6083 | 0.6166 | 0.5886 |
0.7841 | 25.01 | 225000 | 2.5430 | 0.6262 | 0.5941 |
0.7842 | 25.57 | 230000 | 2.6212 | 0.6123 | 0.5852 |
0.7816 | 26.12 | 235000 | 2.6234 | 0.6127 | 0.5934 |
0.7818 | 26.68 | 240000 | 2.6039 | 0.6196 | 0.5945 |
0.7809 | 27.23 | 245000 | 2.6044 | 0.6180 | 0.5937 |
0.7822 | 27.79 | 250000 | 2.5414 | 0.6254 | 0.5931 |
0.7835 | 28.35 | 255000 | 2.5310 | 0.6263 | 0.5910 |
0.781 | 28.9 | 260000 | 2.5196 | 0.6291 | 0.5974 |
0.7777 | 29.46 | 265000 | 2.5659 | 0.6234 | 0.5935 |
Framework versions
- Transformers 4.33.3
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.13.3
- Downloads last month
- 1
Model tree for haryoaw/scenario-KD-PR-MSV-D2_data-cl-massive_all_1_155
Base model
microsoft/mdeberta-v3-base
Finetuned
haryoaw/scenario-MDBT-TCR-MSV-CL