scenario-KD-PR-MSV-D2_data-cl-massive_all_1_166

This model is a fine-tuned version of haryoaw/scenario-MDBT-TCR_data-cl-massive_all_1_1 on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 2.5375
  • Accuracy: 0.6228
  • F1: 0.5882

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 66
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
1.3672 0.56 5000 2.2863 0.6347 0.5695
1.1254 1.11 10000 2.2766 0.6389 0.5787
1.096 1.67 15000 2.3272 0.6320 0.5950
1.0005 2.22 20000 2.3817 0.6288 0.5832
1.0016 2.78 25000 2.3657 0.6298 0.5844
0.9507 3.33 30000 2.3644 0.6336 0.5859
0.9575 3.89 35000 2.3989 0.6260 0.5880
0.9037 4.45 40000 2.4691 0.6229 0.5865
0.9175 5.0 45000 2.4481 0.6209 0.5752
0.8991 5.56 50000 2.5361 0.6132 0.5801
0.8665 6.11 55000 2.5003 0.6167 0.5735
0.8734 6.67 60000 2.4807 0.6249 0.5832
0.8588 7.23 65000 2.5712 0.6115 0.5672
0.8629 7.78 70000 2.5958 0.6076 0.5746
0.8508 8.34 75000 2.5262 0.6229 0.5849
0.8543 8.89 80000 2.5397 0.6171 0.5799
0.8426 9.45 85000 2.5143 0.6119 0.5634
0.8377 10.0 90000 2.5661 0.6131 0.5808
0.8317 10.56 95000 2.5662 0.6168 0.5770
0.8231 11.12 100000 2.5272 0.6207 0.5775
0.8231 11.67 105000 2.5792 0.6047 0.5625
0.8198 12.23 110000 2.5869 0.6144 0.5783
0.8219 12.78 115000 2.5868 0.6126 0.5745
0.8131 13.34 120000 2.6226 0.6043 0.5658
0.8113 13.9 125000 2.5777 0.6174 0.5807
0.8122 14.45 130000 2.6451 0.6022 0.5787
0.8124 15.01 135000 2.5426 0.6215 0.5847
0.8106 15.56 140000 2.6562 0.6031 0.5774
0.8046 16.12 145000 2.6410 0.6059 0.5703
0.8031 16.67 150000 2.6155 0.6088 0.5794
0.7949 17.23 155000 2.6978 0.5997 0.5698
0.799 17.79 160000 2.6272 0.6102 0.5783
0.7964 18.34 165000 2.5934 0.6161 0.5765
0.7943 18.9 170000 2.5863 0.6142 0.5722
0.793 19.45 175000 2.5353 0.6224 0.5762
0.7919 20.01 180000 2.6723 0.6057 0.5759
0.7893 20.56 185000 2.6377 0.6098 0.5820
0.7864 21.12 190000 2.6707 0.6057 0.5824
0.79 21.68 195000 2.7768 0.5904 0.5802
0.7871 22.23 200000 2.6895 0.6001 0.5734
0.786 22.79 205000 2.6505 0.6063 0.5827
0.7862 23.34 210000 2.5607 0.6200 0.5876
0.7863 23.9 215000 2.6414 0.6082 0.5828
0.7839 24.46 220000 2.5978 0.6125 0.5883
0.7828 25.01 225000 2.6076 0.6125 0.5804
0.7838 25.57 230000 2.6193 0.6097 0.5778
0.7825 26.12 235000 2.5599 0.6184 0.5860
0.7832 26.68 240000 2.5363 0.6227 0.5857
0.7788 27.23 245000 2.5842 0.6199 0.5930
0.7768 27.79 250000 2.5907 0.6170 0.5889
0.7802 28.35 255000 2.5625 0.6196 0.5895
0.7808 28.9 260000 2.5512 0.6220 0.5903
0.7776 29.46 265000 2.5375 0.6228 0.5882

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
6
Inference API
Unable to determine this model's library. Check the docs .

Model tree for haryoaw/scenario-KD-PR-MSV-D2_data-cl-massive_all_1_166

Finetuned
(22)
this model