haryoaw commited on
Commit
5128c60
1 Parent(s): 05e17ab

Initial Commit

Browse files
Files changed (5) hide show
  1. README.md +116 -0
  2. config.json +159 -0
  3. eval_results_ml.json +1 -0
  4. pytorch_model.bin +3 -0
  5. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: haryoaw/scenario-MDBT-TCR_data-cl-massive_all_1_1
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - massive
8
+ metrics:
9
+ - accuracy
10
+ - f1
11
+ model-index:
12
+ - name: scenario-KD-PR-MSV-D2_data-cl-massive_all_1_166
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # scenario-KD-PR-MSV-D2_data-cl-massive_all_1_166
20
+
21
+ This model is a fine-tuned version of [haryoaw/scenario-MDBT-TCR_data-cl-massive_all_1_1](https://huggingface.co/haryoaw/scenario-MDBT-TCR_data-cl-massive_all_1_1) on the massive dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 2.5375
24
+ - Accuracy: 0.6228
25
+ - F1: 0.5882
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 5e-05
45
+ - train_batch_size: 32
46
+ - eval_batch_size: 32
47
+ - seed: 66
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - num_epochs: 30
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
55
+ |:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|
56
+ | 1.3672 | 0.56 | 5000 | 2.2863 | 0.6347 | 0.5695 |
57
+ | 1.1254 | 1.11 | 10000 | 2.2766 | 0.6389 | 0.5787 |
58
+ | 1.096 | 1.67 | 15000 | 2.3272 | 0.6320 | 0.5950 |
59
+ | 1.0005 | 2.22 | 20000 | 2.3817 | 0.6288 | 0.5832 |
60
+ | 1.0016 | 2.78 | 25000 | 2.3657 | 0.6298 | 0.5844 |
61
+ | 0.9507 | 3.33 | 30000 | 2.3644 | 0.6336 | 0.5859 |
62
+ | 0.9575 | 3.89 | 35000 | 2.3989 | 0.6260 | 0.5880 |
63
+ | 0.9037 | 4.45 | 40000 | 2.4691 | 0.6229 | 0.5865 |
64
+ | 0.9175 | 5.0 | 45000 | 2.4481 | 0.6209 | 0.5752 |
65
+ | 0.8991 | 5.56 | 50000 | 2.5361 | 0.6132 | 0.5801 |
66
+ | 0.8665 | 6.11 | 55000 | 2.5003 | 0.6167 | 0.5735 |
67
+ | 0.8734 | 6.67 | 60000 | 2.4807 | 0.6249 | 0.5832 |
68
+ | 0.8588 | 7.23 | 65000 | 2.5712 | 0.6115 | 0.5672 |
69
+ | 0.8629 | 7.78 | 70000 | 2.5958 | 0.6076 | 0.5746 |
70
+ | 0.8508 | 8.34 | 75000 | 2.5262 | 0.6229 | 0.5849 |
71
+ | 0.8543 | 8.89 | 80000 | 2.5397 | 0.6171 | 0.5799 |
72
+ | 0.8426 | 9.45 | 85000 | 2.5143 | 0.6119 | 0.5634 |
73
+ | 0.8377 | 10.0 | 90000 | 2.5661 | 0.6131 | 0.5808 |
74
+ | 0.8317 | 10.56 | 95000 | 2.5662 | 0.6168 | 0.5770 |
75
+ | 0.8231 | 11.12 | 100000 | 2.5272 | 0.6207 | 0.5775 |
76
+ | 0.8231 | 11.67 | 105000 | 2.5792 | 0.6047 | 0.5625 |
77
+ | 0.8198 | 12.23 | 110000 | 2.5869 | 0.6144 | 0.5783 |
78
+ | 0.8219 | 12.78 | 115000 | 2.5868 | 0.6126 | 0.5745 |
79
+ | 0.8131 | 13.34 | 120000 | 2.6226 | 0.6043 | 0.5658 |
80
+ | 0.8113 | 13.9 | 125000 | 2.5777 | 0.6174 | 0.5807 |
81
+ | 0.8122 | 14.45 | 130000 | 2.6451 | 0.6022 | 0.5787 |
82
+ | 0.8124 | 15.01 | 135000 | 2.5426 | 0.6215 | 0.5847 |
83
+ | 0.8106 | 15.56 | 140000 | 2.6562 | 0.6031 | 0.5774 |
84
+ | 0.8046 | 16.12 | 145000 | 2.6410 | 0.6059 | 0.5703 |
85
+ | 0.8031 | 16.67 | 150000 | 2.6155 | 0.6088 | 0.5794 |
86
+ | 0.7949 | 17.23 | 155000 | 2.6978 | 0.5997 | 0.5698 |
87
+ | 0.799 | 17.79 | 160000 | 2.6272 | 0.6102 | 0.5783 |
88
+ | 0.7964 | 18.34 | 165000 | 2.5934 | 0.6161 | 0.5765 |
89
+ | 0.7943 | 18.9 | 170000 | 2.5863 | 0.6142 | 0.5722 |
90
+ | 0.793 | 19.45 | 175000 | 2.5353 | 0.6224 | 0.5762 |
91
+ | 0.7919 | 20.01 | 180000 | 2.6723 | 0.6057 | 0.5759 |
92
+ | 0.7893 | 20.56 | 185000 | 2.6377 | 0.6098 | 0.5820 |
93
+ | 0.7864 | 21.12 | 190000 | 2.6707 | 0.6057 | 0.5824 |
94
+ | 0.79 | 21.68 | 195000 | 2.7768 | 0.5904 | 0.5802 |
95
+ | 0.7871 | 22.23 | 200000 | 2.6895 | 0.6001 | 0.5734 |
96
+ | 0.786 | 22.79 | 205000 | 2.6505 | 0.6063 | 0.5827 |
97
+ | 0.7862 | 23.34 | 210000 | 2.5607 | 0.6200 | 0.5876 |
98
+ | 0.7863 | 23.9 | 215000 | 2.6414 | 0.6082 | 0.5828 |
99
+ | 0.7839 | 24.46 | 220000 | 2.5978 | 0.6125 | 0.5883 |
100
+ | 0.7828 | 25.01 | 225000 | 2.6076 | 0.6125 | 0.5804 |
101
+ | 0.7838 | 25.57 | 230000 | 2.6193 | 0.6097 | 0.5778 |
102
+ | 0.7825 | 26.12 | 235000 | 2.5599 | 0.6184 | 0.5860 |
103
+ | 0.7832 | 26.68 | 240000 | 2.5363 | 0.6227 | 0.5857 |
104
+ | 0.7788 | 27.23 | 245000 | 2.5842 | 0.6199 | 0.5930 |
105
+ | 0.7768 | 27.79 | 250000 | 2.5907 | 0.6170 | 0.5889 |
106
+ | 0.7802 | 28.35 | 255000 | 2.5625 | 0.6196 | 0.5895 |
107
+ | 0.7808 | 28.9 | 260000 | 2.5512 | 0.6220 | 0.5903 |
108
+ | 0.7776 | 29.46 | 265000 | 2.5375 | 0.6228 | 0.5882 |
109
+
110
+
111
+ ### Framework versions
112
+
113
+ - Transformers 4.33.3
114
+ - Pytorch 2.1.1+cu121
115
+ - Datasets 2.14.5
116
+ - Tokenizers 0.13.3
config.json ADDED
@@ -0,0 +1,159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "haryoaw/scenario-MDBT-TCR_data-cl-massive_all_1_1",
3
+ "architectures": [
4
+ "DebertaForSequenceClassificationKD"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 768,
10
+ "id2label": {
11
+ "0": "LABEL_0",
12
+ "1": "LABEL_1",
13
+ "2": "LABEL_2",
14
+ "3": "LABEL_3",
15
+ "4": "LABEL_4",
16
+ "5": "LABEL_5",
17
+ "6": "LABEL_6",
18
+ "7": "LABEL_7",
19
+ "8": "LABEL_8",
20
+ "9": "LABEL_9",
21
+ "10": "LABEL_10",
22
+ "11": "LABEL_11",
23
+ "12": "LABEL_12",
24
+ "13": "LABEL_13",
25
+ "14": "LABEL_14",
26
+ "15": "LABEL_15",
27
+ "16": "LABEL_16",
28
+ "17": "LABEL_17",
29
+ "18": "LABEL_18",
30
+ "19": "LABEL_19",
31
+ "20": "LABEL_20",
32
+ "21": "LABEL_21",
33
+ "22": "LABEL_22",
34
+ "23": "LABEL_23",
35
+ "24": "LABEL_24",
36
+ "25": "LABEL_25",
37
+ "26": "LABEL_26",
38
+ "27": "LABEL_27",
39
+ "28": "LABEL_28",
40
+ "29": "LABEL_29",
41
+ "30": "LABEL_30",
42
+ "31": "LABEL_31",
43
+ "32": "LABEL_32",
44
+ "33": "LABEL_33",
45
+ "34": "LABEL_34",
46
+ "35": "LABEL_35",
47
+ "36": "LABEL_36",
48
+ "37": "LABEL_37",
49
+ "38": "LABEL_38",
50
+ "39": "LABEL_39",
51
+ "40": "LABEL_40",
52
+ "41": "LABEL_41",
53
+ "42": "LABEL_42",
54
+ "43": "LABEL_43",
55
+ "44": "LABEL_44",
56
+ "45": "LABEL_45",
57
+ "46": "LABEL_46",
58
+ "47": "LABEL_47",
59
+ "48": "LABEL_48",
60
+ "49": "LABEL_49",
61
+ "50": "LABEL_50",
62
+ "51": "LABEL_51",
63
+ "52": "LABEL_52",
64
+ "53": "LABEL_53",
65
+ "54": "LABEL_54",
66
+ "55": "LABEL_55",
67
+ "56": "LABEL_56",
68
+ "57": "LABEL_57",
69
+ "58": "LABEL_58",
70
+ "59": "LABEL_59"
71
+ },
72
+ "initializer_range": 0.02,
73
+ "intermediate_size": 3072,
74
+ "label2id": {
75
+ "LABEL_0": 0,
76
+ "LABEL_1": 1,
77
+ "LABEL_10": 10,
78
+ "LABEL_11": 11,
79
+ "LABEL_12": 12,
80
+ "LABEL_13": 13,
81
+ "LABEL_14": 14,
82
+ "LABEL_15": 15,
83
+ "LABEL_16": 16,
84
+ "LABEL_17": 17,
85
+ "LABEL_18": 18,
86
+ "LABEL_19": 19,
87
+ "LABEL_2": 2,
88
+ "LABEL_20": 20,
89
+ "LABEL_21": 21,
90
+ "LABEL_22": 22,
91
+ "LABEL_23": 23,
92
+ "LABEL_24": 24,
93
+ "LABEL_25": 25,
94
+ "LABEL_26": 26,
95
+ "LABEL_27": 27,
96
+ "LABEL_28": 28,
97
+ "LABEL_29": 29,
98
+ "LABEL_3": 3,
99
+ "LABEL_30": 30,
100
+ "LABEL_31": 31,
101
+ "LABEL_32": 32,
102
+ "LABEL_33": 33,
103
+ "LABEL_34": 34,
104
+ "LABEL_35": 35,
105
+ "LABEL_36": 36,
106
+ "LABEL_37": 37,
107
+ "LABEL_38": 38,
108
+ "LABEL_39": 39,
109
+ "LABEL_4": 4,
110
+ "LABEL_40": 40,
111
+ "LABEL_41": 41,
112
+ "LABEL_42": 42,
113
+ "LABEL_43": 43,
114
+ "LABEL_44": 44,
115
+ "LABEL_45": 45,
116
+ "LABEL_46": 46,
117
+ "LABEL_47": 47,
118
+ "LABEL_48": 48,
119
+ "LABEL_49": 49,
120
+ "LABEL_5": 5,
121
+ "LABEL_50": 50,
122
+ "LABEL_51": 51,
123
+ "LABEL_52": 52,
124
+ "LABEL_53": 53,
125
+ "LABEL_54": 54,
126
+ "LABEL_55": 55,
127
+ "LABEL_56": 56,
128
+ "LABEL_57": 57,
129
+ "LABEL_58": 58,
130
+ "LABEL_59": 59,
131
+ "LABEL_6": 6,
132
+ "LABEL_7": 7,
133
+ "LABEL_8": 8,
134
+ "LABEL_9": 9
135
+ },
136
+ "layer_norm_eps": 1e-07,
137
+ "max_position_embeddings": 512,
138
+ "max_relative_positions": -1,
139
+ "model_type": "deberta-v2",
140
+ "norm_rel_ebd": "layer_norm",
141
+ "num_attention_heads": 12,
142
+ "num_hidden_layers": 6,
143
+ "pad_token_id": 0,
144
+ "pooler_dropout": 0,
145
+ "pooler_hidden_act": "gelu",
146
+ "pooler_hidden_size": 768,
147
+ "pos_att_type": [
148
+ "p2c",
149
+ "c2p"
150
+ ],
151
+ "position_biased_input": false,
152
+ "position_buckets": 256,
153
+ "relative_attention": true,
154
+ "share_att_key": true,
155
+ "torch_dtype": "float32",
156
+ "transformers_version": "4.33.3",
157
+ "type_vocab_size": 0,
158
+ "vocab_size": 251000
159
+ }
eval_results_ml.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"fi-FI": {"f1": 0.8185654843965812, "accuracy": 0.8375924680564896}, "sq-AL": {"f1": 0.5060347096229518, "accuracy": 0.5487558843308675}, "fa-IR": {"f1": 0.6626430134940315, "accuracy": 0.7286482851378615}, "km-KH": {"f1": 0.5507473799144685, "accuracy": 0.6086079354404842}, "ru-RU": {"f1": 0.8361757489572489, "accuracy": 0.8695359784801614}, "ur-PK": {"f1": 0.4323427974825687, "accuracy": 0.47679892400806995}, "it-IT": {"f1": 0.7281453764442346, "accuracy": 0.7854741089441829}, "hy-AM": {"f1": 0.8089729899693363, "accuracy": 0.8345662407531943}, "vi-VN": {"f1": 0.802784526273962, "accuracy": 0.8483523873570948}, "pl-PL": {"f1": 0.6749734430443848, "accuracy": 0.7484868863483524}, "ta-IN": {"f1": 0.5535878065005075, "accuracy": 0.6371889710827169}, "en-US": {"f1": 0.8533334901073361, "accuracy": 0.8739071956960323}, "ca-ES": {"f1": 0.705261508656046, "accuracy": 0.7505043712172159}, "he-IL": {"f1": 0.5583847103877605, "accuracy": 0.64862138533961}, "sw-KE": {"f1": 0.41707719956399514, "accuracy": 0.46503026227303296}, "ja-JP": {"f1": 0.827722791639295, "accuracy": 0.8661735036987223}, "ms-MY": {"f1": 0.7065942792556262, "accuracy": 0.7310020174848688}, "hu-HU": {"f1": 0.8100280651128943, "accuracy": 0.8429724277067921}, "pt-PT": {"f1": 0.8201771749434434, "accuracy": 0.8614660390047074}, "is-IS": {"f1": 0.7988709622486909, "accuracy": 0.8342299932750504}, "am-ET": {"f1": 0.21241614934171635, "accuracy": 0.29388029589778075}, "nb-NO": {"f1": 0.7530287326270728, "accuracy": 0.7935440484196369}, "sl-SL": {"f1": 0.5559915147998604, "accuracy": 0.5921318090114324}, "my-MM": {"f1": 0.7941428305268132, "accuracy": 0.8328850033624747}, "zh-TW": {"f1": 0.8132714228827519, "accuracy": 0.8214525891055817}, "tl-PH": {"f1": 0.4225753889204516, "accuracy": 0.4912575655682582}, "kn-IN": {"f1": 0.5479312630666711, "accuracy": 0.6200403496973773}, "hi-IN": {"f1": 0.8080656797579765, "accuracy": 0.8419636852723604}, "ml-IN": {"f1": 0.5605298716246553, "accuracy": 0.6610625420309347}, "de-DE": {"f1": 0.8232113684408763, "accuracy": 0.8496973772696704}, "fr-FR": {"f1": 0.8278172862118172, "accuracy": 0.8607935440484197}, "da-DK": {"f1": 0.7471526383479482, "accuracy": 0.7995965030262273}, "id-ID": {"f1": 0.8226262724566998, "accuracy": 0.8604572965702757}, "tr-TR": {"f1": 0.8171646403428943, "accuracy": 0.8473436449226631}, "te-IN": {"f1": 0.5333393846888277, "accuracy": 0.5988567585743106}, "az-AZ": {"f1": 0.6229792048502777, "accuracy": 0.6792199058507061}, "mn-MN": {"f1": 0.4214343418551895, "accuracy": 0.49630127774041694}, "el-GR": {"f1": 0.8301566872787283, "accuracy": 0.851714862138534}, "nl-NL": {"f1": 0.7454672330266914, "accuracy": 0.7958977807666443}, "zh-CN": {"f1": 0.830008294398807, "accuracy": 0.8496973772696704}, "ko-KR": {"f1": 0.829324355597617, "accuracy": 0.8507061197041023}, "lv-LV": {"f1": 0.8212260705260246, "accuracy": 0.8406186953597848}, "sv-SE": {"f1": 0.7415052423690945, "accuracy": 0.7935440484196369}, "jv-ID": {"f1": 0.7970838616907877, "accuracy": 0.8291862811028917}, "ro-RO": {"f1": 0.6510342531375963, "accuracy": 0.7155346334902488}, "es-ES": {"f1": 0.8359031932773301, "accuracy": 0.8628110289172831}, "bn-BD": {"f1": 0.7743732625493598, "accuracy": 0.8261600537995964}, "af-ZA": {"f1": 0.5558859774590826, "accuracy": 0.6109616677874916}, "cy-GB": {"f1": 0.18400356280396138, "accuracy": 0.2649630127774042}, "ka-GE": {"f1": 0.7657580868166836, "accuracy": 0.7885003362474782}, "ar-SA": {"f1": 0.7597519240020606, "accuracy": 0.7989240080699395}, "th-TH": {"f1": 0.7603247560763742, "accuracy": 0.7726967047747142}, "all": {"f1": 0.7034208376115567, "accuracy": 0.7341575707412964}}
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1d09c2df238e7a6554f76b625c94e4e87e7bc493e91c3812c2d9fc2d8b8704c7
3
+ size 946915690
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6d24e3d00e3e65535130a8cb0ac0371c40f585deef0312efeb69d56e9a05d29
3
+ size 4600