scenario-KD-PR-MSV-EN-CL-D2_data-en-massive_all_1_144

This model is a fine-tuned version of haryoaw/scenario-MDBT-TCR_data-cl-massive_all_1_1 on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 3.1600
  • Accuracy: 0.4441
  • F1: 0.4308

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 44
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 0.28 100 3.7790 0.2429 0.1196
No log 0.56 200 3.4643 0.3507 0.2479
No log 0.83 300 3.4223 0.3611 0.2794
No log 1.11 400 3.1902 0.4263 0.3452
2.4418 1.39 500 3.2027 0.4200 0.3472
2.4418 1.67 600 3.5415 0.3617 0.3319
2.4418 1.94 700 3.2162 0.4149 0.3680
2.4418 2.22 800 3.1688 0.4370 0.3957
2.4418 2.5 900 3.3381 0.3933 0.3575
1.4539 2.78 1000 3.1812 0.4304 0.3918
1.4539 3.06 1100 3.4003 0.3960 0.3753
1.4539 3.33 1200 3.4464 0.3814 0.3694
1.4539 3.61 1300 3.2492 0.4227 0.3837
1.4539 3.89 1400 3.4571 0.3881 0.3827
1.2201 4.17 1500 3.4012 0.4094 0.3895
1.2201 4.44 1600 3.3870 0.4077 0.3824
1.2201 4.72 1700 3.5253 0.3935 0.3770
1.2201 5.0 1800 3.4169 0.3977 0.3823
1.2201 5.28 1900 3.4388 0.3916 0.3815
1.0765 5.56 2000 3.3133 0.4234 0.3943
1.0765 5.83 2100 3.2300 0.4373 0.4103
1.0765 6.11 2200 3.2652 0.4225 0.3992
1.0765 6.39 2300 3.3747 0.4110 0.4035
1.0765 6.67 2400 3.7005 0.3663 0.3695
1.0152 6.94 2500 3.4336 0.4022 0.3895
1.0152 7.22 2600 3.3431 0.4204 0.3932
1.0152 7.5 2700 3.3754 0.4078 0.4005
1.0152 7.78 2800 3.3738 0.4162 0.4053
1.0152 8.06 2900 3.7654 0.3669 0.3875
0.9578 8.33 3000 3.4896 0.4073 0.4109
0.9578 8.61 3100 3.6077 0.3918 0.3920
0.9578 8.89 3200 3.2703 0.4377 0.4127
0.9578 9.17 3300 3.3504 0.4135 0.3898
0.9578 9.44 3400 3.3873 0.4152 0.4068
0.9331 9.72 3500 3.4685 0.4081 0.4060
0.9331 10.0 3600 3.1091 0.4561 0.4230
0.9331 10.28 3700 3.3033 0.4234 0.3854
0.9331 10.56 3800 3.5147 0.3876 0.3824
0.9331 10.83 3900 3.4273 0.4152 0.4093
0.9075 11.11 4000 3.2401 0.4372 0.4178
0.9075 11.39 4100 3.4298 0.4138 0.3970
0.9075 11.67 4200 3.2139 0.4418 0.4194
0.9075 11.94 4300 3.3277 0.4243 0.4046
0.9075 12.22 4400 3.3797 0.4164 0.3987
0.8887 12.5 4500 3.3331 0.4188 0.4077
0.8887 12.78 4600 3.2767 0.4292 0.4096
0.8887 13.06 4700 3.3673 0.4233 0.4130
0.8887 13.33 4800 3.3226 0.4161 0.4109
0.8887 13.61 4900 3.3967 0.4083 0.4066
0.8783 13.89 5000 3.3190 0.4196 0.4068
0.8783 14.17 5100 3.4477 0.4006 0.3977
0.8783 14.44 5200 3.2397 0.4366 0.4165
0.8783 14.72 5300 3.2908 0.4250 0.4123
0.8783 15.0 5400 3.3391 0.4159 0.3990
0.8692 15.28 5500 3.5906 0.3802 0.3686
0.8692 15.56 5600 3.3987 0.4087 0.4060
0.8692 15.83 5700 3.2266 0.4383 0.4252
0.8692 16.11 5800 3.3234 0.4192 0.4106
0.8692 16.39 5900 3.2569 0.4254 0.4140
0.8624 16.67 6000 3.2896 0.4222 0.4126
0.8624 16.94 6100 3.3086 0.4211 0.4108
0.8624 17.22 6200 3.3834 0.4123 0.4098
0.8624 17.5 6300 3.0719 0.4570 0.4288
0.8624 17.78 6400 3.2763 0.4259 0.4080
0.856 18.06 6500 3.2298 0.4363 0.4148
0.856 18.33 6600 3.2321 0.4329 0.4140
0.856 18.61 6700 3.2208 0.4371 0.4205
0.856 18.89 6800 3.2499 0.4308 0.4057
0.856 19.17 6900 3.3323 0.4188 0.4131
0.8496 19.44 7000 3.2094 0.4348 0.4212
0.8496 19.72 7100 3.3067 0.4230 0.4173
0.8496 20.0 7200 3.2897 0.4256 0.4083
0.8496 20.28 7300 3.2663 0.4211 0.4042
0.8496 20.56 7400 3.3320 0.4195 0.4090
0.8436 20.83 7500 3.2299 0.4317 0.4144
0.8436 21.11 7600 3.2754 0.4247 0.4121
0.8436 21.39 7700 3.3103 0.4246 0.4267
0.8436 21.67 7800 3.3754 0.4113 0.4081
0.8436 21.94 7900 3.3186 0.4270 0.4273
0.8427 22.22 8000 3.2873 0.4313 0.4212
0.8427 22.5 8100 3.3444 0.4208 0.4162
0.8427 22.78 8200 3.2735 0.4307 0.4194
0.8427 23.06 8300 3.1492 0.4495 0.4267
0.8427 23.33 8400 3.2441 0.4311 0.4202
0.8371 23.61 8500 3.2327 0.4361 0.4236
0.8371 23.89 8600 3.2446 0.4305 0.4226
0.8371 24.17 8700 3.2584 0.4266 0.4210
0.8371 24.44 8800 3.1232 0.4490 0.4311
0.8371 24.72 8900 3.2589 0.4319 0.4228
0.8353 25.0 9000 3.2467 0.4333 0.4207
0.8353 25.28 9100 3.1507 0.4435 0.4270
0.8353 25.56 9200 3.2932 0.4264 0.4241
0.8353 25.83 9300 3.2214 0.4350 0.4247
0.8353 26.11 9400 3.2290 0.4284 0.4214
0.834 26.39 9500 3.1636 0.4452 0.4323
0.834 26.67 9600 3.3134 0.4231 0.4206
0.834 26.94 9700 3.1800 0.4432 0.4269
0.834 27.22 9800 3.2237 0.4354 0.4293
0.834 27.5 9900 3.1967 0.4379 0.4287
0.8309 27.78 10000 3.2085 0.4346 0.4259
0.8309 28.06 10100 3.2214 0.4360 0.4282
0.8309 28.33 10200 3.1793 0.4440 0.4326
0.8309 28.61 10300 3.1608 0.4444 0.4331
0.8309 28.89 10400 3.1759 0.4413 0.4288
0.8312 29.17 10500 3.1611 0.4452 0.4338
0.8312 29.44 10600 3.1461 0.4472 0.4327
0.8312 29.72 10700 3.1562 0.4436 0.4287
0.8312 30.0 10800 3.1600 0.4441 0.4308

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
5
Inference API
Unable to determine this model's library. Check the docs .

Model tree for haryoaw/scenario-KD-PR-MSV-EN-CL-D2_data-en-massive_all_1_144

Finetuned
(22)
this model