haryoaw's picture
Initial Commit
a485dd5 verified
|
raw
history blame
9.29 kB
metadata
license: mit
base_model: haryoaw/scenario-MDBT-TCR_data-cl-massive_all_1_1
tags:
  - generated_from_trainer
datasets:
  - massive
metrics:
  - accuracy
  - f1
model-index:
  - name: scenario-KD-PR-MSV-EN-CL-D2_data-en-massive_all_1_155
    results: []

scenario-KD-PR-MSV-EN-CL-D2_data-en-massive_all_1_155

This model is a fine-tuned version of haryoaw/scenario-MDBT-TCR_data-cl-massive_all_1_1 on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 3.1707
  • Accuracy: 0.4471
  • F1: 0.4385

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 55
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 0.28 100 3.7123 0.2625 0.1148
No log 0.56 200 3.5358 0.3390 0.2394
No log 0.83 300 3.3412 0.3922 0.3123
No log 1.11 400 3.4008 0.3772 0.3110
2.4588 1.39 500 3.2536 0.4111 0.3405
2.4588 1.67 600 3.2840 0.4097 0.3563
2.4588 1.94 700 3.1644 0.4307 0.3710
2.4588 2.22 800 3.1380 0.4364 0.3872
2.4588 2.5 900 3.2618 0.4180 0.3833
1.4472 2.78 1000 3.1488 0.4300 0.3861
1.4472 3.06 1100 3.1174 0.4488 0.4097
1.4472 3.33 1200 3.1442 0.4481 0.4091
1.4472 3.61 1300 3.3004 0.4111 0.3841
1.4472 3.89 1400 3.3097 0.4010 0.3802
1.2115 4.17 1500 3.3768 0.4052 0.3846
1.2115 4.44 1600 3.3732 0.4077 0.3919
1.2115 4.72 1700 3.3767 0.4125 0.3980
1.2115 5.0 1800 3.3720 0.4195 0.3896
1.2115 5.28 1900 3.3548 0.4147 0.3941
1.0796 5.56 2000 3.6313 0.3784 0.3743
1.0796 5.83 2100 3.2951 0.4186 0.3930
1.0796 6.11 2200 3.2913 0.4267 0.3988
1.0796 6.39 2300 3.1985 0.4357 0.4107
1.0796 6.67 2400 3.4566 0.3963 0.3932
1.01 6.94 2500 3.3982 0.4094 0.4000
1.01 7.22 2600 3.2082 0.4343 0.3960
1.01 7.5 2700 3.3417 0.4153 0.4042
1.01 7.78 2800 3.2235 0.4332 0.4025
1.01 8.06 2900 3.2782 0.4264 0.4084
0.9549 8.33 3000 3.3575 0.4120 0.3981
0.9549 8.61 3100 3.2973 0.4231 0.4094
0.9549 8.89 3200 3.3885 0.4086 0.3964
0.9549 9.17 3300 3.3343 0.4185 0.4105
0.9549 9.44 3400 3.3463 0.4177 0.4090
0.9242 9.72 3500 3.2792 0.4287 0.4131
0.9242 10.0 3600 3.3775 0.4110 0.4032
0.9242 10.28 3700 3.3542 0.4210 0.4144
0.9242 10.56 3800 3.2521 0.4345 0.4194
0.9242 10.83 3900 3.3305 0.4234 0.4080
0.9048 11.11 4000 3.5624 0.3953 0.4027
0.9048 11.39 4100 3.5235 0.3909 0.3993
0.9048 11.67 4200 3.3855 0.4153 0.3993
0.9048 11.94 4300 3.4062 0.4026 0.3931
0.9048 12.22 4400 3.3170 0.4241 0.4154
0.8863 12.5 4500 3.2977 0.4287 0.4153
0.8863 12.78 4600 3.5425 0.3886 0.3976
0.8863 13.06 4700 3.4107 0.4081 0.3997
0.8863 13.33 4800 3.4859 0.4068 0.4001
0.8863 13.61 4900 3.4532 0.4104 0.4136
0.8764 13.89 5000 3.4220 0.4105 0.4108
0.8764 14.17 5100 3.4623 0.4121 0.4171
0.8764 14.44 5200 3.4474 0.4026 0.4045
0.8764 14.72 5300 3.3895 0.4177 0.4161
0.8764 15.0 5400 3.2330 0.4416 0.4290
0.8673 15.28 5500 3.3441 0.4180 0.4133
0.8673 15.56 5600 3.3918 0.4172 0.4166
0.8673 15.83 5700 3.2297 0.4393 0.4187
0.8673 16.11 5800 3.2193 0.4418 0.4287
0.8673 16.39 5900 3.4330 0.4124 0.4190
0.8595 16.67 6000 3.2666 0.4351 0.4289
0.8595 16.94 6100 3.1744 0.4529 0.4413
0.8595 17.22 6200 3.4892 0.4036 0.4129
0.8595 17.5 6300 3.3720 0.4189 0.4215
0.8595 17.78 6400 3.3287 0.4213 0.4179
0.8523 18.06 6500 3.4352 0.4089 0.4124
0.8523 18.33 6600 3.2985 0.4255 0.4233
0.8523 18.61 6700 3.2437 0.4355 0.4274
0.8523 18.89 6800 3.3418 0.4200 0.4139
0.8523 19.17 6900 3.2395 0.4346 0.4342
0.8491 19.44 7000 3.2704 0.4283 0.4115
0.8491 19.72 7100 3.2447 0.4378 0.4256
0.8491 20.0 7200 3.2999 0.4281 0.4272
0.8491 20.28 7300 3.2139 0.4346 0.4371
0.8491 20.56 7400 3.3605 0.4190 0.4138
0.8447 20.83 7500 3.3631 0.4216 0.4171
0.8447 21.11 7600 3.2030 0.4422 0.4276
0.8447 21.39 7700 3.3002 0.4257 0.4256
0.8447 21.67 7800 3.3028 0.4275 0.4296
0.8447 21.94 7900 3.2922 0.4281 0.4225
0.8412 22.22 8000 3.1588 0.4464 0.4339
0.8412 22.5 8100 3.2553 0.4367 0.4307
0.8412 22.78 8200 3.1886 0.4433 0.4365
0.8412 23.06 8300 3.3312 0.4245 0.4270
0.8412 23.33 8400 3.2022 0.4447 0.4338
0.8389 23.61 8500 3.3122 0.4214 0.4179
0.8389 23.89 8600 3.0719 0.4621 0.4380
0.8389 24.17 8700 3.2395 0.4386 0.4262
0.8389 24.44 8800 3.2242 0.4364 0.4339
0.8389 24.72 8900 3.3582 0.4201 0.4197
0.8333 25.0 9000 3.1279 0.4537 0.4377
0.8333 25.28 9100 3.1643 0.4458 0.4361
0.8333 25.56 9200 3.1543 0.4503 0.4358
0.8333 25.83 9300 3.2963 0.4251 0.4243
0.8333 26.11 9400 3.0952 0.4567 0.4375
0.8326 26.39 9500 3.2282 0.4385 0.4347
0.8326 26.67 9600 3.1402 0.4512 0.4411
0.8326 26.94 9700 3.2730 0.4321 0.4331
0.8326 27.22 9800 3.2324 0.4393 0.4374
0.8326 27.5 9900 3.2203 0.4418 0.4380
0.8304 27.78 10000 3.1916 0.4444 0.4388
0.8304 28.06 10100 3.2167 0.4395 0.4370
0.8304 28.33 10200 3.1614 0.4477 0.4386
0.8304 28.61 10300 3.1688 0.4483 0.4361
0.8304 28.89 10400 3.1459 0.4511 0.4427
0.8306 29.17 10500 3.1191 0.4546 0.4433
0.8306 29.44 10600 3.1557 0.4493 0.4417
0.8306 29.72 10700 3.1777 0.4456 0.4385
0.8306 30.0 10800 3.1707 0.4471 0.4385

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.13.3