scenario-KD-PR-MSV-EN-CL-D2_data-en-massive_all_1_166
This model is a fine-tuned version of haryoaw/scenario-MDBT-TCR_data-cl-massive_all_1_1 on the massive dataset. It achieves the following results on the evaluation set:
- Loss: 3.1294
- Accuracy: 0.4517
- F1: 0.4433
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 66
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
No log | 0.28 | 100 | 3.7346 | 0.2787 | 0.1429 |
No log | 0.56 | 200 | 3.3645 | 0.3864 | 0.2813 |
No log | 0.83 | 300 | 3.3794 | 0.3835 | 0.3163 |
No log | 1.11 | 400 | 3.2108 | 0.4210 | 0.3411 |
2.3822 | 1.39 | 500 | 3.2084 | 0.4271 | 0.3699 |
2.3822 | 1.67 | 600 | 3.3062 | 0.4016 | 0.3490 |
2.3822 | 1.94 | 700 | 3.2449 | 0.4132 | 0.3835 |
2.3822 | 2.22 | 800 | 3.1548 | 0.4312 | 0.3880 |
2.3822 | 2.5 | 900 | 3.1709 | 0.4314 | 0.3838 |
1.4286 | 2.78 | 1000 | 3.2567 | 0.4224 | 0.3884 |
1.4286 | 3.06 | 1100 | 3.1783 | 0.4350 | 0.3915 |
1.4286 | 3.33 | 1200 | 3.2211 | 0.4300 | 0.3733 |
1.4286 | 3.61 | 1300 | 3.3106 | 0.4191 | 0.3951 |
1.4286 | 3.89 | 1400 | 3.2384 | 0.4332 | 0.4036 |
1.1816 | 4.17 | 1500 | 3.1592 | 0.4444 | 0.3974 |
1.1816 | 4.44 | 1600 | 3.2437 | 0.4177 | 0.3883 |
1.1816 | 4.72 | 1700 | 3.3608 | 0.4095 | 0.3988 |
1.1816 | 5.0 | 1800 | 3.2164 | 0.4222 | 0.3920 |
1.1816 | 5.28 | 1900 | 3.3678 | 0.4175 | 0.4033 |
1.0555 | 5.56 | 2000 | 3.2902 | 0.4247 | 0.4130 |
1.0555 | 5.83 | 2100 | 3.0966 | 0.4534 | 0.4204 |
1.0555 | 6.11 | 2200 | 3.2431 | 0.4367 | 0.4165 |
1.0555 | 6.39 | 2300 | 3.2783 | 0.4297 | 0.4044 |
1.0555 | 6.67 | 2400 | 3.4989 | 0.3955 | 0.3785 |
0.9971 | 6.94 | 2500 | 3.8710 | 0.3411 | 0.3596 |
0.9971 | 7.22 | 2600 | 3.6151 | 0.3881 | 0.3837 |
0.9971 | 7.5 | 2700 | 3.4787 | 0.3939 | 0.3997 |
0.9971 | 7.78 | 2800 | 3.3991 | 0.4045 | 0.3941 |
0.9971 | 8.06 | 2900 | 3.4382 | 0.4166 | 0.4154 |
0.9389 | 8.33 | 3000 | 3.2570 | 0.4235 | 0.4135 |
0.9389 | 8.61 | 3100 | 3.2388 | 0.4250 | 0.4056 |
0.9389 | 8.89 | 3200 | 3.4120 | 0.4067 | 0.4031 |
0.9389 | 9.17 | 3300 | 3.1757 | 0.4413 | 0.4144 |
0.9389 | 9.44 | 3400 | 3.3490 | 0.4163 | 0.4080 |
0.9179 | 9.72 | 3500 | 2.9801 | 0.4754 | 0.4437 |
0.9179 | 10.0 | 3600 | 3.2767 | 0.4280 | 0.4156 |
0.9179 | 10.28 | 3700 | 3.3163 | 0.4169 | 0.4131 |
0.9179 | 10.56 | 3800 | 3.2532 | 0.4307 | 0.4094 |
0.9179 | 10.83 | 3900 | 3.2696 | 0.4218 | 0.4004 |
0.8936 | 11.11 | 4000 | 3.2218 | 0.4317 | 0.4061 |
0.8936 | 11.39 | 4100 | 3.0951 | 0.4531 | 0.4236 |
0.8936 | 11.67 | 4200 | 3.3236 | 0.4216 | 0.4165 |
0.8936 | 11.94 | 4300 | 3.3463 | 0.4189 | 0.4076 |
0.8936 | 12.22 | 4400 | 3.2788 | 0.4258 | 0.4061 |
0.8822 | 12.5 | 4500 | 3.1698 | 0.4394 | 0.4218 |
0.8822 | 12.78 | 4600 | 3.1792 | 0.4463 | 0.4273 |
0.8822 | 13.06 | 4700 | 3.3204 | 0.4198 | 0.4161 |
0.8822 | 13.33 | 4800 | 3.2768 | 0.4350 | 0.4176 |
0.8822 | 13.61 | 4900 | 3.1899 | 0.4473 | 0.4319 |
0.8701 | 13.89 | 5000 | 3.2120 | 0.4381 | 0.4231 |
0.8701 | 14.17 | 5100 | 3.3195 | 0.4212 | 0.4145 |
0.8701 | 14.44 | 5200 | 3.1320 | 0.4493 | 0.4297 |
0.8701 | 14.72 | 5300 | 3.2009 | 0.4435 | 0.4250 |
0.8701 | 15.0 | 5400 | 3.1418 | 0.4453 | 0.4219 |
0.8598 | 15.28 | 5500 | 3.3812 | 0.4151 | 0.4237 |
0.8598 | 15.56 | 5600 | 3.3899 | 0.4179 | 0.4160 |
0.8598 | 15.83 | 5700 | 3.2094 | 0.4429 | 0.4344 |
0.8598 | 16.11 | 5800 | 3.2356 | 0.4420 | 0.4366 |
0.8598 | 16.39 | 5900 | 3.5436 | 0.3909 | 0.4047 |
0.8552 | 16.67 | 6000 | 3.1463 | 0.4484 | 0.4287 |
0.8552 | 16.94 | 6100 | 3.0971 | 0.4589 | 0.4393 |
0.8552 | 17.22 | 6200 | 3.3156 | 0.4183 | 0.4100 |
0.8552 | 17.5 | 6300 | 3.2175 | 0.4378 | 0.4298 |
0.8552 | 17.78 | 6400 | 3.2079 | 0.4402 | 0.4261 |
0.8465 | 18.06 | 6500 | 3.2534 | 0.4322 | 0.4185 |
0.8465 | 18.33 | 6600 | 3.1361 | 0.4483 | 0.4267 |
0.8465 | 18.61 | 6700 | 3.1913 | 0.4403 | 0.4295 |
0.8465 | 18.89 | 6800 | 3.0707 | 0.4600 | 0.4364 |
0.8465 | 19.17 | 6900 | 3.1861 | 0.4446 | 0.4315 |
0.8426 | 19.44 | 7000 | 3.0143 | 0.4689 | 0.4494 |
0.8426 | 19.72 | 7100 | 3.1831 | 0.4422 | 0.4359 |
0.8426 | 20.0 | 7200 | 3.1656 | 0.4489 | 0.4353 |
0.8426 | 20.28 | 7300 | 3.1168 | 0.4501 | 0.4406 |
0.8426 | 20.56 | 7400 | 3.1521 | 0.4489 | 0.4408 |
0.8402 | 20.83 | 7500 | 3.1576 | 0.4482 | 0.4385 |
0.8402 | 21.11 | 7600 | 3.0448 | 0.4631 | 0.4422 |
0.8402 | 21.39 | 7700 | 3.1503 | 0.4498 | 0.4423 |
0.8402 | 21.67 | 7800 | 3.1675 | 0.4445 | 0.4337 |
0.8402 | 21.94 | 7900 | 3.2237 | 0.4363 | 0.4309 |
0.8348 | 22.22 | 8000 | 3.1466 | 0.4461 | 0.4375 |
0.8348 | 22.5 | 8100 | 3.1429 | 0.4410 | 0.4272 |
0.8348 | 22.78 | 8200 | 3.4103 | 0.4102 | 0.4182 |
0.8348 | 23.06 | 8300 | 3.0529 | 0.4638 | 0.4445 |
0.8348 | 23.33 | 8400 | 3.2268 | 0.4380 | 0.4307 |
0.8332 | 23.61 | 8500 | 3.0921 | 0.4562 | 0.4461 |
0.8332 | 23.89 | 8600 | 3.2255 | 0.4397 | 0.4415 |
0.8332 | 24.17 | 8700 | 3.1758 | 0.4432 | 0.4360 |
0.8332 | 24.44 | 8800 | 3.2341 | 0.4352 | 0.4290 |
0.8332 | 24.72 | 8900 | 3.1512 | 0.4491 | 0.4381 |
0.8297 | 25.0 | 9000 | 3.0930 | 0.4553 | 0.4378 |
0.8297 | 25.28 | 9100 | 3.0608 | 0.4626 | 0.4447 |
0.8297 | 25.56 | 9200 | 3.1169 | 0.4520 | 0.4421 |
0.8297 | 25.83 | 9300 | 3.2131 | 0.4359 | 0.4319 |
0.8297 | 26.11 | 9400 | 3.1056 | 0.4515 | 0.4412 |
0.8269 | 26.39 | 9500 | 3.1172 | 0.4490 | 0.4427 |
0.8269 | 26.67 | 9600 | 3.1082 | 0.4514 | 0.4401 |
0.8269 | 26.94 | 9700 | 3.1088 | 0.4554 | 0.4427 |
0.8269 | 27.22 | 9800 | 3.1340 | 0.4509 | 0.4407 |
0.8269 | 27.5 | 9900 | 3.1682 | 0.4466 | 0.4416 |
0.827 | 27.78 | 10000 | 3.1441 | 0.4509 | 0.4433 |
0.827 | 28.06 | 10100 | 3.2030 | 0.4394 | 0.4336 |
0.827 | 28.33 | 10200 | 3.2133 | 0.4393 | 0.4359 |
0.827 | 28.61 | 10300 | 3.1405 | 0.4480 | 0.4354 |
0.827 | 28.89 | 10400 | 3.1575 | 0.4471 | 0.4375 |
0.825 | 29.17 | 10500 | 3.1558 | 0.4471 | 0.4382 |
0.825 | 29.44 | 10600 | 3.1283 | 0.4504 | 0.4395 |
0.825 | 29.72 | 10700 | 3.1274 | 0.4521 | 0.4403 |
0.825 | 30.0 | 10800 | 3.1294 | 0.4517 | 0.4433 |
Framework versions
- Transformers 4.33.3
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.13.3
- Downloads last month
- 6
Model tree for haryoaw/scenario-KD-PR-MSV-EN-CL-D2_data-en-massive_all_1_166
Base model
microsoft/mdeberta-v3-base
Finetuned
haryoaw/scenario-MDBT-TCR-MSV-CL