scenario-KD-PR-MSV-EN-CL-D2_data-en-massive_all_1_166

This model is a fine-tuned version of haryoaw/scenario-MDBT-TCR_data-cl-massive_all_1_1 on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 3.1294
  • Accuracy: 0.4517
  • F1: 0.4433

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 66
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 0.28 100 3.7346 0.2787 0.1429
No log 0.56 200 3.3645 0.3864 0.2813
No log 0.83 300 3.3794 0.3835 0.3163
No log 1.11 400 3.2108 0.4210 0.3411
2.3822 1.39 500 3.2084 0.4271 0.3699
2.3822 1.67 600 3.3062 0.4016 0.3490
2.3822 1.94 700 3.2449 0.4132 0.3835
2.3822 2.22 800 3.1548 0.4312 0.3880
2.3822 2.5 900 3.1709 0.4314 0.3838
1.4286 2.78 1000 3.2567 0.4224 0.3884
1.4286 3.06 1100 3.1783 0.4350 0.3915
1.4286 3.33 1200 3.2211 0.4300 0.3733
1.4286 3.61 1300 3.3106 0.4191 0.3951
1.4286 3.89 1400 3.2384 0.4332 0.4036
1.1816 4.17 1500 3.1592 0.4444 0.3974
1.1816 4.44 1600 3.2437 0.4177 0.3883
1.1816 4.72 1700 3.3608 0.4095 0.3988
1.1816 5.0 1800 3.2164 0.4222 0.3920
1.1816 5.28 1900 3.3678 0.4175 0.4033
1.0555 5.56 2000 3.2902 0.4247 0.4130
1.0555 5.83 2100 3.0966 0.4534 0.4204
1.0555 6.11 2200 3.2431 0.4367 0.4165
1.0555 6.39 2300 3.2783 0.4297 0.4044
1.0555 6.67 2400 3.4989 0.3955 0.3785
0.9971 6.94 2500 3.8710 0.3411 0.3596
0.9971 7.22 2600 3.6151 0.3881 0.3837
0.9971 7.5 2700 3.4787 0.3939 0.3997
0.9971 7.78 2800 3.3991 0.4045 0.3941
0.9971 8.06 2900 3.4382 0.4166 0.4154
0.9389 8.33 3000 3.2570 0.4235 0.4135
0.9389 8.61 3100 3.2388 0.4250 0.4056
0.9389 8.89 3200 3.4120 0.4067 0.4031
0.9389 9.17 3300 3.1757 0.4413 0.4144
0.9389 9.44 3400 3.3490 0.4163 0.4080
0.9179 9.72 3500 2.9801 0.4754 0.4437
0.9179 10.0 3600 3.2767 0.4280 0.4156
0.9179 10.28 3700 3.3163 0.4169 0.4131
0.9179 10.56 3800 3.2532 0.4307 0.4094
0.9179 10.83 3900 3.2696 0.4218 0.4004
0.8936 11.11 4000 3.2218 0.4317 0.4061
0.8936 11.39 4100 3.0951 0.4531 0.4236
0.8936 11.67 4200 3.3236 0.4216 0.4165
0.8936 11.94 4300 3.3463 0.4189 0.4076
0.8936 12.22 4400 3.2788 0.4258 0.4061
0.8822 12.5 4500 3.1698 0.4394 0.4218
0.8822 12.78 4600 3.1792 0.4463 0.4273
0.8822 13.06 4700 3.3204 0.4198 0.4161
0.8822 13.33 4800 3.2768 0.4350 0.4176
0.8822 13.61 4900 3.1899 0.4473 0.4319
0.8701 13.89 5000 3.2120 0.4381 0.4231
0.8701 14.17 5100 3.3195 0.4212 0.4145
0.8701 14.44 5200 3.1320 0.4493 0.4297
0.8701 14.72 5300 3.2009 0.4435 0.4250
0.8701 15.0 5400 3.1418 0.4453 0.4219
0.8598 15.28 5500 3.3812 0.4151 0.4237
0.8598 15.56 5600 3.3899 0.4179 0.4160
0.8598 15.83 5700 3.2094 0.4429 0.4344
0.8598 16.11 5800 3.2356 0.4420 0.4366
0.8598 16.39 5900 3.5436 0.3909 0.4047
0.8552 16.67 6000 3.1463 0.4484 0.4287
0.8552 16.94 6100 3.0971 0.4589 0.4393
0.8552 17.22 6200 3.3156 0.4183 0.4100
0.8552 17.5 6300 3.2175 0.4378 0.4298
0.8552 17.78 6400 3.2079 0.4402 0.4261
0.8465 18.06 6500 3.2534 0.4322 0.4185
0.8465 18.33 6600 3.1361 0.4483 0.4267
0.8465 18.61 6700 3.1913 0.4403 0.4295
0.8465 18.89 6800 3.0707 0.4600 0.4364
0.8465 19.17 6900 3.1861 0.4446 0.4315
0.8426 19.44 7000 3.0143 0.4689 0.4494
0.8426 19.72 7100 3.1831 0.4422 0.4359
0.8426 20.0 7200 3.1656 0.4489 0.4353
0.8426 20.28 7300 3.1168 0.4501 0.4406
0.8426 20.56 7400 3.1521 0.4489 0.4408
0.8402 20.83 7500 3.1576 0.4482 0.4385
0.8402 21.11 7600 3.0448 0.4631 0.4422
0.8402 21.39 7700 3.1503 0.4498 0.4423
0.8402 21.67 7800 3.1675 0.4445 0.4337
0.8402 21.94 7900 3.2237 0.4363 0.4309
0.8348 22.22 8000 3.1466 0.4461 0.4375
0.8348 22.5 8100 3.1429 0.4410 0.4272
0.8348 22.78 8200 3.4103 0.4102 0.4182
0.8348 23.06 8300 3.0529 0.4638 0.4445
0.8348 23.33 8400 3.2268 0.4380 0.4307
0.8332 23.61 8500 3.0921 0.4562 0.4461
0.8332 23.89 8600 3.2255 0.4397 0.4415
0.8332 24.17 8700 3.1758 0.4432 0.4360
0.8332 24.44 8800 3.2341 0.4352 0.4290
0.8332 24.72 8900 3.1512 0.4491 0.4381
0.8297 25.0 9000 3.0930 0.4553 0.4378
0.8297 25.28 9100 3.0608 0.4626 0.4447
0.8297 25.56 9200 3.1169 0.4520 0.4421
0.8297 25.83 9300 3.2131 0.4359 0.4319
0.8297 26.11 9400 3.1056 0.4515 0.4412
0.8269 26.39 9500 3.1172 0.4490 0.4427
0.8269 26.67 9600 3.1082 0.4514 0.4401
0.8269 26.94 9700 3.1088 0.4554 0.4427
0.8269 27.22 9800 3.1340 0.4509 0.4407
0.8269 27.5 9900 3.1682 0.4466 0.4416
0.827 27.78 10000 3.1441 0.4509 0.4433
0.827 28.06 10100 3.2030 0.4394 0.4336
0.827 28.33 10200 3.2133 0.4393 0.4359
0.827 28.61 10300 3.1405 0.4480 0.4354
0.827 28.89 10400 3.1575 0.4471 0.4375
0.825 29.17 10500 3.1558 0.4471 0.4382
0.825 29.44 10600 3.1283 0.4504 0.4395
0.825 29.72 10700 3.1274 0.4521 0.4403
0.825 30.0 10800 3.1294 0.4517 0.4433

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
6
Inference API
Unable to determine this model's library. Check the docs .

Model tree for haryoaw/scenario-KD-PR-MSV-EN-CL-D2_data-en-massive_all_1_166

Finetuned
(22)
this model