scenario-KD-SCR-CDF-ALL-D2_data-cardiffnlp_tweet_sentiment_multilingual_all66sss

This model is a fine-tuned version of haryoaw/scenario-MDBT-TCR_data-cardiffnlp_tweet_sentiment_multilingual_all on the tweet_sentiment_multilingual dataset. It achieves the following results on the evaluation set:

  • Loss: 98.0968
  • Accuracy: 0.4425
  • F1: 0.4324

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 32
  • seed: 66
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
208.3506 1.0875 500 154.6242 0.3353 0.2392
144.3425 2.1751 1000 136.8450 0.3592 0.2854
130.8787 3.2626 1500 127.5179 0.3449 0.2781
121.607 4.3502 2000 120.6836 0.3441 0.2003
114.9253 5.4377 2500 116.0772 0.3391 0.1845
110.2614 6.5253 3000 112.7433 0.3638 0.3057
106.3691 7.6128 3500 110.4269 0.3368 0.1864
103.447 8.7004 4000 108.3496 0.3457 0.2213
101.1211 9.7879 4500 106.8976 0.3515 0.2545
99.1339 10.8755 5000 105.7209 0.3526 0.2304
97.4903 11.9630 5500 104.6693 0.3611 0.2644
95.9649 13.0506 6000 104.2819 0.3762 0.3144
94.5941 14.1381 6500 103.7839 0.3522 0.2629
93.4504 15.2257 7000 103.1094 0.3634 0.2659
92.4911 16.3132 7500 102.6213 0.3708 0.2965
91.3827 17.4008 8000 101.7905 0.3553 0.2367
90.5461 18.4883 8500 101.6541 0.3920 0.3622
89.7497 19.5759 9000 101.0513 0.3893 0.3294
89.0327 20.6634 9500 100.9607 0.3819 0.3518
88.2506 21.7510 10000 100.4227 0.4024 0.3914
87.6247 22.8385 10500 100.3990 0.3688 0.2909
86.9539 23.9260 11000 100.0497 0.3916 0.3222
86.4517 25.0136 11500 100.0023 0.3816 0.3035
85.8318 26.1011 12000 99.8234 0.4086 0.3865
85.3791 27.1887 12500 99.6990 0.4066 0.3778
84.9131 28.2762 13000 99.4542 0.3947 0.3581
84.3986 29.3638 13500 99.2787 0.4151 0.4025
84.0077 30.4513 14000 99.1953 0.4140 0.3797
83.7463 31.5389 14500 99.0662 0.4225 0.3824
83.4825 32.6264 15000 99.0083 0.3954 0.3351
82.892 33.7140 15500 98.7523 0.4244 0.4113
82.6493 34.8015 16000 98.6114 0.4090 0.3895
82.4001 35.8891 16500 98.6116 0.4213 0.3906
82.1674 36.9766 17000 98.5904 0.4348 0.4099
81.9281 38.0642 17500 98.3501 0.4128 0.3718
81.6301 39.1517 18000 98.3880 0.4294 0.4104
81.4927 40.2393 18500 98.2517 0.4279 0.4222
81.3458 41.3268 19000 98.1944 0.4317 0.4149
81.1125 42.4144 19500 98.1906 0.4155 0.3674
80.9588 43.5019 20000 98.2918 0.4336 0.4209
80.907 44.5895 20500 98.1503 0.4317 0.4038
80.8419 45.6770 21000 98.1176 0.4221 0.4068
80.5292 46.7645 21500 98.1451 0.4437 0.4328
80.5741 47.8521 22000 98.0707 0.4344 0.4210
80.5482 48.9396 22500 98.0968 0.4425 0.4324

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.19.1
Downloads last month
11
Safetensors
Model size
104M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for haryoaw/scenario-KD-SCR-CDF-ALL-D2_data-cardiffnlp_tweet_sentiment_multilingual_all66sss

Finetuned
(13)
this model