scenario-NON-KD-PO-COPY-D2_data-cl-massive_all_1_166

This model is a fine-tuned version of haryoaw/scenario-MDBT-TCR-MSV-CL on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 3.4255
  • Accuracy: 0.6379
  • F1: 0.5920

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 66
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.7212 0.5558 5000 1.5835 0.6111 0.5437
0.4554 1.1116 10000 1.6185 0.6276 0.5700
0.4132 1.6674 15000 1.6466 0.6333 0.5784
0.2821 2.2232 20000 1.7639 0.6374 0.5855
0.2714 2.7790 25000 1.7789 0.6393 0.5865
0.2005 3.3348 30000 2.1278 0.6238 0.5738
0.1893 3.8906 35000 2.1050 0.6324 0.5876
0.1542 4.4464 40000 2.2392 0.6360 0.5896
0.1397 5.0022 45000 2.3114 0.6287 0.5875
0.1171 5.5580 50000 2.5310 0.6291 0.5886
0.0794 6.1138 55000 2.7319 0.6340 0.5865
0.0871 6.6696 60000 2.8662 0.6369 0.5904
0.0569 7.2254 65000 3.1081 0.6357 0.5858
0.0685 7.7812 70000 3.0348 0.6374 0.5915
0.0518 8.3370 75000 3.3951 0.6326 0.5923
0.0472 8.8928 80000 3.4227 0.6362 0.5919
0.0337 9.4486 85000 3.4255 0.6379 0.5920

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.19.1
Downloads last month
6
Safetensors
Model size
236M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for haryoaw/scenario-NON-KD-PO-COPY-D2_data-cl-massive_all_1_166

Finetuned
(22)
this model