haryoaw's picture
Initial Commit
735f322 verified
|
raw
history blame
5.2 kB
metadata
license: mit
base_model: xlm-roberta-base
tags:
  - generated_from_trainer
datasets:
  - tweet_sentiment_multilingual
metrics:
  - accuracy
  - f1
model-index:
  - name: >-
      scenario-NON-KD-SCR-COPY-CDF-ALL-D2_data-cardiffnlp_tweet_sentiment_multilingual
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: tweet_sentiment_multilingual
          type: tweet_sentiment_multilingual
          config: all
          split: validation
          args: all
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.47762345679012347
          - name: F1
            type: f1
            value: 0.47819062529207484

scenario-NON-KD-SCR-COPY-CDF-ALL-D2_data-cardiffnlp_tweet_sentiment_multilingual

This model is a fine-tuned version of xlm-roberta-base on the tweet_sentiment_multilingual dataset. It achieves the following results on the evaluation set:

  • Loss: 6.0055
  • Accuracy: 0.4776
  • F1: 0.4782

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 11423
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
1.1157 1.09 500 1.0964 0.3835 0.2965
0.9636 2.17 1000 1.1184 0.4954 0.4470
0.5977 3.26 1500 1.4984 0.5116 0.5070
0.342 4.35 2000 1.8178 0.5077 0.5054
0.1946 5.43 2500 2.5918 0.5077 0.5062
0.1442 6.52 3000 2.5451 0.4904 0.4833
0.101 7.61 3500 3.3273 0.4942 0.4879
0.0788 8.7 4000 3.3097 0.4811 0.4729
0.0596 9.78 4500 3.4639 0.4954 0.4959
0.0505 10.87 5000 3.5381 0.4884 0.4884
0.0413 11.96 5500 3.3937 0.4958 0.4961
0.0364 13.04 6000 3.9058 0.4850 0.4848
0.0273 14.13 6500 4.3025 0.4892 0.4887
0.0282 15.22 7000 3.9833 0.4877 0.4885
0.0253 16.3 7500 4.4515 0.4811 0.4802
0.0188 17.39 8000 4.7345 0.4873 0.4843
0.0191 18.48 8500 4.5842 0.4880 0.4880
0.0187 19.57 9000 4.6871 0.4838 0.4821
0.0189 20.65 9500 4.7307 0.4931 0.4857
0.0157 21.74 10000 4.8938 0.4796 0.4722
0.0133 22.83 10500 4.6099 0.4765 0.4681
0.0107 23.91 11000 5.0670 0.4815 0.4787
0.0076 25.0 11500 4.9710 0.4799 0.4780
0.0078 26.09 12000 5.0339 0.4830 0.4841
0.0101 27.17 12500 5.0560 0.4904 0.4907
0.0086 28.26 13000 5.0095 0.4850 0.4843
0.0074 29.35 13500 5.1031 0.4846 0.4831
0.0032 30.43 14000 5.4537 0.4830 0.4840
0.0054 31.52 14500 5.4554 0.4838 0.4847
0.0046 32.61 15000 5.5972 0.4780 0.4774
0.0059 33.7 15500 5.3884 0.4853 0.4863
0.0029 34.78 16000 5.3174 0.4738 0.4736
0.0033 35.87 16500 5.5911 0.4753 0.4742
0.0041 36.96 17000 5.2149 0.4769 0.4747
0.0034 38.04 17500 5.5052 0.4857 0.4853
0.0014 39.13 18000 5.5164 0.4807 0.4812
0.0015 40.22 18500 5.6182 0.4803 0.4791
0.0002 41.3 19000 5.7053 0.4799 0.4780
0.0001 42.39 19500 5.7820 0.4826 0.4808
0.0001 43.48 20000 5.8324 0.4850 0.4844
0.0005 44.57 20500 5.9002 0.4823 0.4798
0.0004 45.65 21000 5.9340 0.4811 0.4810
0.0011 46.74 21500 5.9656 0.4780 0.4785
0.0002 47.83 22000 5.9859 0.4792 0.4798
0.0001 48.91 22500 5.9994 0.4788 0.4793
0.0001 50.0 23000 6.0055 0.4776 0.4782

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.13.3