|
--- |
|
license: mit |
|
base_model: facebook/xlm-v-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: scenario-TCR-XLMV_data-en-cardiff_eng_only_alpha2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# scenario-TCR-XLMV_data-en-cardiff_eng_only_alpha2 |
|
|
|
This model is a fine-tuned version of [facebook/xlm-v-base](https://huggingface.co/facebook/xlm-v-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.6119 |
|
- Accuracy: 0.5472 |
|
- F1: 0.5508 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 24 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 30 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| |
|
| No log | 1.03 | 60 | 1.0411 | 0.4652 | 0.4291 | |
|
| No log | 2.07 | 120 | 1.0685 | 0.5035 | 0.4475 | |
|
| No log | 3.1 | 180 | 1.1001 | 0.5485 | 0.5474 | |
|
| No log | 4.14 | 240 | 1.0647 | 0.5516 | 0.5549 | |
|
| No log | 5.17 | 300 | 1.2458 | 0.5489 | 0.5528 | |
|
| No log | 6.21 | 360 | 1.2913 | 0.5719 | 0.5717 | |
|
| No log | 7.24 | 420 | 1.5986 | 0.5437 | 0.5459 | |
|
| No log | 8.28 | 480 | 1.6908 | 0.5498 | 0.5510 | |
|
| 0.641 | 9.31 | 540 | 1.7310 | 0.5582 | 0.5587 | |
|
| 0.641 | 10.34 | 600 | 1.9959 | 0.5388 | 0.5394 | |
|
| 0.641 | 11.38 | 660 | 2.2660 | 0.5357 | 0.5401 | |
|
| 0.641 | 12.41 | 720 | 2.3724 | 0.5507 | 0.5543 | |
|
| 0.641 | 13.45 | 780 | 2.5843 | 0.5450 | 0.5464 | |
|
| 0.641 | 14.48 | 840 | 2.7003 | 0.5534 | 0.5556 | |
|
| 0.641 | 15.52 | 900 | 2.7255 | 0.5459 | 0.5491 | |
|
| 0.641 | 16.55 | 960 | 2.9127 | 0.5481 | 0.5504 | |
|
| 0.1116 | 17.59 | 1020 | 2.9543 | 0.5432 | 0.5462 | |
|
| 0.1116 | 18.62 | 1080 | 3.0564 | 0.5560 | 0.5591 | |
|
| 0.1116 | 19.66 | 1140 | 3.1501 | 0.5494 | 0.5530 | |
|
| 0.1116 | 20.69 | 1200 | 3.2882 | 0.5467 | 0.5507 | |
|
| 0.1116 | 21.72 | 1260 | 3.3562 | 0.5459 | 0.5496 | |
|
| 0.1116 | 22.76 | 1320 | 3.4030 | 0.5538 | 0.5573 | |
|
| 0.1116 | 23.79 | 1380 | 3.4897 | 0.5489 | 0.5523 | |
|
| 0.1116 | 24.83 | 1440 | 3.5540 | 0.5476 | 0.5508 | |
|
| 0.0147 | 25.86 | 1500 | 3.5772 | 0.5498 | 0.5530 | |
|
| 0.0147 | 26.9 | 1560 | 3.6123 | 0.5481 | 0.5515 | |
|
| 0.0147 | 27.93 | 1620 | 3.5954 | 0.5494 | 0.5529 | |
|
| 0.0147 | 28.97 | 1680 | 3.6081 | 0.5489 | 0.5524 | |
|
| 0.0147 | 30.0 | 1740 | 3.6119 | 0.5472 | 0.5508 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.3 |
|
- Pytorch 2.1.1+cu121 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|