vit-base-finetuned-cephalometric

This model is a fine-tuned version of google/vit-base-patch16-224 on the cepha-cutoutCLAHE dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7340
  • Accuracy: 0.6528

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 16 0.9458 0.5486
0.9879 2.0 32 0.6947 0.6597
0.4628 3.0 48 0.6375 0.6597
0.135 4.0 64 0.7060 0.6944
0.0339 5.0 80 0.7301 0.6597
0.0339 6.0 96 0.9236 0.6875
0.0059 7.0 112 0.9261 0.6806
0.0024 8.0 128 0.9961 0.6875
0.0012 9.0 144 1.0060 0.6736
0.0008 10.0 160 1.0329 0.6875
0.0008 11.0 176 1.0575 0.6944
0.0006 12.0 192 1.0768 0.6944
0.0006 13.0 208 1.1002 0.6944
0.0005 14.0 224 1.1220 0.6875
0.0004 15.0 240 1.1367 0.6875
0.0004 16.0 256 1.1538 0.6875
0.0004 17.0 272 1.1707 0.6875
0.0003 18.0 288 1.1855 0.6875
0.0003 19.0 304 1.2007 0.6875
0.0003 20.0 320 1.2066 0.6806
0.0003 21.0 336 1.2211 0.6806
0.0003 22.0 352 1.2291 0.6875
0.0002 23.0 368 1.2385 0.6875
0.0002 24.0 384 1.2508 0.6875

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
9
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for hasnanmr/vit-base-finetuned-cephalometric

Finetuned
(629)
this model