vit-base-oxford-iiit-pets

This model is a fine-tuned version of google/vit-base-patch16-224 on the cepha-cutoutCLAHE dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6194
  • Accuracy: 0.7639

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0901 1.0 32 0.9278 0.4931
0.5383 2.0 64 0.6985 0.6319
0.2707 3.0 96 0.6691 0.7222
0.0366 4.0 128 0.9557 0.6806
0.0066 5.0 160 0.8927 0.7083
0.0075 6.0 192 1.2046 0.7014
0.0013 7.0 224 1.2583 0.7083
0.0006 8.0 256 1.3180 0.6944
0.0004 9.0 288 1.3468 0.7014
0.0002 10.0 320 1.3582 0.6875
0.0002 11.0 352 1.3868 0.6875
0.0002 12.0 384 1.4094 0.6806
0.0002 13.0 416 1.4392 0.6806
0.0002 14.0 448 1.4536 0.6875
0.0001 15.0 480 1.4695 0.6875
0.0001 16.0 512 1.4850 0.6875
0.0001 17.0 544 1.5004 0.6875
0.0001 18.0 576 1.5110 0.6875
0.0001 19.0 608 1.5219 0.6875
0.0001 20.0 640 1.5340 0.6875
0.0001 21.0 672 1.5461 0.6875
0.0001 22.0 704 1.5541 0.6875
0.0001 23.0 736 1.5624 0.6875

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
17
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for hasnanmr/vit-base-oxford-iiit-pets

Finetuned
(627)
this model