DEPRECATED!

This model is old and no longer relevant with the releases of all around better Finnish models such as GPT-3 models from TurkuNLP

You may of course still use this for experiments and benchmarking, but I doubt this will work any better.

Background and model name

This model was trained for my master's thesis: "A generative pre-trained transformer model for Finnish" (2022)

Model name in my thesis was FinnGPT but I chose not to pollute the namespace and leave that kind of name for a more serious attempt at Finnish GPT models. You may call this however you want. Example names are Väinö's GPT-FI or by hatanp/gpt-fi. If you really want you can also refer to this with the FinnGPT like I did in my thesis.

Versions

How to use

Example with text generation pipeline:

>>> from transformers import pipeline
>>> generator = pipeline('text-generation', model='hatanp/gpt-fi')
>>> generator("Testilauseella voidaan testata tokenisointia. Tämän jatkaminen on luultavasti vaikeaa, mutta", max_length=3,do_sample=True, top_p=0.9, top_k=12, temperature=0.9, num_return_sequences=2)

[{'generated_text': 'Testilauseella voidaan testata tokenisointia. Tämän jatkaminen on luultavasti vaikeaa, mutta ei mahdotonta. \n Jos et ole kiinnostunut tokenis'},
 {'generated_text': 'Testilauseella voidaan testata tokenisointia. Tämän jatkaminen on luultavasti vaikeaa, mutta sen toteuttaminen onnistuu, jos testilaboratorio osaa analysoida'},
 {'generated_text': 'Testilauseella voidaan testata tokenisointia. Tämän jatkaminen on luultavasti vaikeaa, mutta sen testaaminen on silti hyödyllistä. Jos testisuorit'}]

Example to generate text manually:

>>> from transformers import AutoModelForCausalLM,AutoTokenizer
>>> model = AutoModelForCausalLM.from_pretrained("hatanp/gpt-fi")
>>> tokenizer = AutoTokenizer.from_pretrained("hatanp/gpt-fi")
>>> prompt = "Testilauseella voidaan testata tokenisointia. Tämän jatkaminen on luultavasti vaikeaa, mutta"
>>> inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
>>> prompt_len = len(tokenizer.decode(inputs[0],skip_special_tokens=True, clean_up_tokenization_spaces=True))
>>> outputs = model.generate(inputs, max_length=len(inputs[0])+20, do_sample=True, top_p=0.9, top_k=12, temperature=0.9)
>>> text_out = tokenizer.decode(outputs[0])[prompt_len:]
>>> print(text_out)

" on olemassa joitain keinoja, joilla voit testata tokenisointia. Tässä artikkelissa käydään läpi testilauseiden"
Downloads last month
18
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.