File size: 4,343 Bytes
ceedef8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133


import os
import sys
from datasets import load_dataset, load_from_disk, concatenate_datasets
from transformers import PreTrainedTokenizerFast
import transformers
from transformers import (
    AutoConfig,
    AutoModelForCausalLM,
    Trainer,
    TrainingArguments,
    default_data_collator,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers import AutoModelWithLMHead, AutoTokenizer, AutoModelForCausalLM, AutoModelForSequenceClassification, AutoModel

from transformers import GPT2Model
from transformers import GPT2TokenizerFast
import transformers
import torch
import numpy as np
import argparse

parser = argparse.ArgumentParser()
parser.add_argument('test', type=int)
parser.add_argument('length', type=int)
#parser.add_argument('--input_file', type=int)
args = parser.parse_args()

def compute_metrics(eval_pred):
    logits,labels = eval_pred
    import pickle
    with open("logits_{}.pickle".format("xed"),"wb") as handle:
        pickle.dump(logits, handle, protocol=pickle.HIGHEST_PROTOCOL)
    with open("labels_{}.pickle".format("xed"),"wb") as handle:
        pickle.dump(labels, handle, protocol=pickle.HIGHEST_PROTOCOL)
    #Continue in a jupyter notebook from here

    return



class MultilabelTrainer(Trainer):
    def compute_loss(self,model,inputs,return_outputs=False):
        labels = inputs.pop("labels")
        outputs = model(**inputs)
        logits = outputs.logits
        loss_fct = torch.nn.BCEWithLogitsLoss()
        loss = loss_fct(logits.view(-1,self.model.config.num_labels),
        labels.float().view(-1,self.model.config.num_labels))
        return (loss,outputs) if return_outputs else loss

def main():
    ds_names = ["yle", "online_review","xed","ylilauta"]
    #ds_sizes = [1000, 3000, 10000, 32000, 9999999]
    print("test:",args.test)
    ds_name = ds_names[args.test]
    #ds_size = int(args.test.slit()[1])
    ds_size = args.length
    print(ds_name, ds_size)
 
    metric = compute_metrics

    #print("cuda_avail:",torch.cuda.is_available())
    #checkpoint_loc = "/media/volume/output/checkpoint-275000"
    #output_dir = "/media/volume/fi_nlp/output/finetune"
    #checkpoint_loc = r"H:\Data_temp\checkpoints\good_large\checkpoint-67400"
    output_dir = "/data/loc/"+ds_name

    #Most of the parameters not used but lets just pass this to make the Trainer happy... 
    training_args = TrainingArguments(
        output_dir=output_dir,
        per_device_train_batch_size=4,
        per_device_eval_batch_size=4,
        learning_rate=5e-6,
        adam_beta1=0.95,
        adam_beta2=0.985,
        adam_epsilon=1e-8,
        weight_decay=0.001,
        lr_scheduler_type="linear",
        gradient_accumulation_steps=4,
        max_steps=10000,
        num_train_epochs=20000,
        save_total_limit=2,
        dataloader_num_workers=5,
        save_steps=100000,
        warmup_steps=500,
        do_eval=True,
        eval_steps=500,
        evaluation_strategy="steps",
        logging_strategy="steps",
        logging_steps=50,
        fp16_opt_level="O2",
        half_precision_backend="amp",
        log_on_each_node=False,
        disable_tqdm=True
    )

    print(training_args)

    dataset = load_from_disk(r"/data_loc/"+ds_name)["test"]
    #dataset = load_from_disk(r"C:\Users\vin\Documents\Projects\dippa\tests\ylilauta\tokenized_set").train_test_split(test_size=0.1)
    
    trainer_class = MultilabelTrainer
    
    #print("num_labels",num_labels)
    model = AutoModelForSequenceClassification.from_pretrained("/fine_tuning_checkpoint/"+ds_name)
    tokenizer = AutoTokenizer.from_pretrained("/fine_tuning_checkpoint/"+ds_name)
    tokenizer.add_special_tokens({'pad_token': tokenizer.eos_token})

    print("init trainer")
    trainer = trainer_class(
            model=model,
            args=training_args,
            train_dataset=dataset,
            eval_dataset=dataset,
            tokenizer=tokenizer,
            compute_metrics=metric,
            data_collator=default_data_collator
        )
    #checkpoint = None
    #checkpoint = get_last_checkpoint(output_dir)
    #checkpoint = None
    #train_result = trainer.train()
    #trainer.save_state()
    metrics = trainer.evaluate()
    print(metrics)
    #trainer.save_model()  # Saves the tokenizer too for easy upload

if __name__ == "__main__":
    main()