File size: 4,934 Bytes
ceedef8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151


import os
import sys
from datasets import load_dataset, load_from_disk, concatenate_datasets
from transformers import PreTrainedTokenizerFast
import transformers
from transformers import (
    AutoConfig,
    AutoModelForCausalLM,
    Trainer,
    TrainingArguments,
    default_data_collator,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers import AutoModelWithLMHead, AutoTokenizer, AutoModelForCausalLM, AutoModelForSequenceClassification, AutoModel

from transformers import GPT2Model
from transformers import GPT2TokenizerFast
import transformers
import torch
import numpy as np
import argparse

parser = argparse.ArgumentParser()
parser.add_argument('test', type=int)
parser.add_argument('length', type=int)
#parser.add_argument('--input_file', type=int)
args = parser.parse_args()

def compute_metrics(eval_pred):
    logits,labels = eval_pred

    predictions = np.zeros(logits.shape)
    predictions[np.arange(len(predictions)),logits.argmax(1)] = 1
    predictions = predictions > 0.5

    #predictions = logits > 0.5
    labels = labels > 0.5
    return {"acc":np.all(predictions == labels,axis=1).sum()/predictions.shape[0]}

def compute_metrics_regression(eval_pred):
    logits,labels = eval_pred

    labels = np.expand_dims(labels,1)
    val = np.abs(logits-labels).mean()
    perc = ((np.abs(logits-labels).round() < 1).sum()*100) / (len(labels))
    perc_50 = ((np.abs(logits-labels).round()[0:50] < 1).sum()*100) / (50)

    return {"dev":val,"perc":perc,"perc_50":perc_50}



class MultilabelTrainer(Trainer):
    def compute_loss(self,model,inputs,return_outputs=False):
        labels = inputs.pop("labels")
        outputs = model(**inputs)
        logits = outputs.logits
        loss_fct = torch.nn.BCEWithLogitsLoss()
        loss = loss_fct(logits.view(-1,self.model.config.num_labels),
        labels.float().view(-1,self.model.config.num_labels))
        return (loss,outputs) if return_outputs else loss

def main():
    ds_names = ["yle", "online_reviews","xed","ylilauta"]
    #ds_sizes = [1000, 3000, 10000, 32000, 9999999]
    print("test:",args.test)
    ds_name = ds_names[args.test]
    ds_size = args.length
    print(ds_name, ds_size)
 
    metric = compute_metrics_regression if ds_name == "online_reviews" else compute_metrics

    #print("cuda_avail:",torch.cuda.is_available())
    #checkpoint_loc = "/media/volume/output/checkpoint-275000"
    #output_dir = "/media/volume/fi_nlp/output/finetune"
    #checkpoint_loc = r"H:\Data_temp\checkpoints\good_large\checkpoint-67400"
    output_dir = "/scratch/project_462000007/hatanpav/output/dippa/gpt/"+ds_name

    training_args = TrainingArguments(
        output_dir=output_dir,
        per_device_train_batch_size=4,
        per_device_eval_batch_size=4,
        learning_rate=5e-6,
        adam_beta1=0.95,
        adam_beta2=0.985,
        adam_epsilon=1e-8,
        weight_decay=0.001,
        lr_scheduler_type="linear",
        gradient_accumulation_steps=2,#This one assumes 4x8 GPUs. Set to 64 to get global batch size of 64 with one GPU 
        max_steps=10000,
        num_train_epochs=20000,#Overriden by max_steps
        save_total_limit=2,
        dataloader_num_workers=5,
        save_steps=100000,
        warmup_steps=500,
        do_eval=True,
        eval_steps=500,
        evaluation_strategy="steps",
        logging_strategy="steps",
        logging_steps=50,
        fp16_opt_level="O2",
        half_precision_backend="amp",
        log_on_each_node=False,
        disable_tqdm=True
    )

    print(training_args)

    dataset = load_from_disk(r"/path/to/data/"+ds_name)
    
    #Handle regression type task:
    n_labels = 1
    trainer_class = MultilabelTrainer
    try:
        n_labels = len(dataset["train"][0]["labels"])
    except:
        #The case of label being a float.
        n_labels = 1
        trainer_class = Trainer
    if ds_size > len(dataset["train"]):
        ds_size = len(dataset["train"])
    

    model = AutoModelForSequenceClassification.from_pretrained("/checkpoint/loc",num_labels=n_labels)
    tokenizer = AutoTokenizer.from_pretrained("/checkpoint/loc")
    tokenizer.add_special_tokens({'pad_token': tokenizer.eos_token})

    print("init trainer")
    train_set = dataset["train"].select(range(ds_size))
    test_set = dataset["test"]
    trainer = trainer_class(
            model=model,
            args=training_args,
            train_dataset=train_set,
            eval_dataset=test_set,
            tokenizer=tokenizer,
            compute_metrics=metric,
            data_collator=default_data_collator
        )
    checkpoint = None
    #checkpoint = get_last_checkpoint(output_dir)
    train_result = trainer.train(resume_from_checkpoint=checkpoint)
    #trainer.save_state()
    metrics = trainer.evaluate()
    print(metrics)
    trainer.save_model()  # Saves the tokenizer too for easy upload

if __name__ == "__main__":
    main()