hatemestinbejaia's picture
Add new SentenceTransformer model
0563e00 verified
---
base_model: aubmindlab/araelectra-base-discriminator
datasets:
- hatemestinbejaia/RARAELECTRAandRARABERTusedDATASET
library_name: sentence-transformers
metrics:
- map
- mrr@10
- ndcg@10
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:5000000
- loss:MarginMSELoss
widget:
- source_sentence: ما هي الدرجة المطلوبة ليكون طبيب نفساني للأطفال
sentences:
- بعد الانتهاء من درجة البكالوريوس ، يطلب من الأطباء النفسيين للأطفال إكمال كلية
الطب لمدة 4 سنوات ( درجة MD أو DO ) قبل متابعة تدريب الإقامة . يتكون هذا عادة
من ثلاث سنوات من الطب النفسي العام تليها سنتان من التدريب المخصص للطب النفسي للأطفال
. لكي تصبح طبيبا نفسيا للأطفال ، تتطلب العديد من البرامج أن تحصل على درجة جامعية
في علم النفس ، على الرغم من أن بعض برامج الدراسات العليا تتطلب فقط أن تأخذ الشرط
الأساسي دورات العلوم ( الأحياء ، والعلوم الفيزيائية والاجتماعية ، والإحصاء ، والرياضيات
، وما إلى ذلك ) قبل التقدم للحصول على درجة الدراسات العليا .
- التعليم مطلوب ليصبح عالم أرصاد جوية . لكي تصبح خبيرا في الأرصاد الجوية ، يجب أن
تحصل على درجة جامعية في علم الأرصاد الجوية أو علوم الغلاف الجوي ، أو شهادة في
الرياضيات أو العلوم الفيزيائية أو الهندسة مدعومة بدورات في علم الأرصاد الجوية
.
- تعريف . تحدث عدوى المكورات العنقودية بسبب بكتيريا المكورات العنقودية ، وهي أنواع
من الجراثيم توجد عادة على الجلد أو في أنف الأفراد الأصحاء ، وفي معظم الأحيان لا
تسبب هذه البكتيريا أي مشاكل أو تؤدي إلى التهابات جلدية طفيفة نسبيا . تحدث عدوى
المكورات العنقودية بسبب بكتيريا المكورات العنقودية ، وهي أنواع من الجراثيم توجد
عادة على الجلد أو في أنف الأفراد الأصحاء .
- source_sentence: تعريف المنحنيات الثانوية
sentences:
- 'تقدم هذه الصفحة جميع المعاني والترجمات الممكنة لكلمة الخلافة الثانوية . Freebase
( 0 . 00 - 0 votes ) قيم هذا التعريف : التعاقب الثانوي هو أحد نوعي التعاقب البيئي
للحياة النباتية .'
- التعريف - ماذا يعني التوهين ؟ التوهين هو مصطلح في الاتصالات يشير إلى انخفاض في
قوة الإشارة يحدث عادة أثناء إرسال الإشارات التناظرية أو الرقمية عبر مسافات طويلة
. يقاس التوهين تاريخيا بالديسيبل ولكن يمكن قياسه أيضا من حيث الجهد .
- 'الانحناءات الثانوية للعمود الفقري . الانحناءات الثانوية للعمود الفقري . المنحنيات
المحدبة بطنيا للعمود الفقري التي تتطور بعد الولادة في منطقتي عنق الرحم والقطني
: اللوردس العنقي والقطني .'
- source_sentence: ما هو مرض الانسداد الرئوي المزمن ؟
sentences:
- أظهرت الدراسة بأثر رجعي عدم وجود فرق كبير في التحسن في تحمل التمرين أو QOL بعد
إعادة التأهيل الرئوي في مرض الانسداد الرئوي المزمن مقابل مرضى الانسداد الرئوي
المزمن . لذلك ، فإن إعادة التأهيل الرئوي فعالة للمرضى ذوي الإعاقة بسبب أي مرض
تنفسي مزمن ، وليس فقط مرض الانسداد الرئوي المزمن .
- التفاقم الحاد لمرض الانسداد الرئوي المزمن . التفاقم الحاد لمرض الانسداد الرئوي
المزمن المعروف أيضا باسم التفاقم الحاد لالتهاب الشعب الهوائية المزمن ( AECB )
هو تفاقم مفاجئ لأعراض مرض الانسداد الرئوي المزمن ( ضيق التنفس وكمية ولون البلغم
) والذي يستمر عادة لعدة أيام . قد يحدث بسبب عدوى بكتيريا أو فيروسات أو عن طريق
ملوثات بيئية .
- هناك اختلافات رئيسية بين طريقة تصميم Shingrix و Zostavax . يحتوي لقاح الهربس النطاقي
الجديد على مادة مساعدة ، وهي مادة تعزز استجابة الجهاز المناعي . قد يكون هذا هو
ما يجعل Shingrix أكثر فاعلية وطويلة الأمد ، كما يقول شافنر من فاندربيلت .
- source_sentence: تعريف المزواة
sentences:
- إجمالي المحطات . تعد المحطات الإجمالية واحدة من أكثر أدوات المسح شيوعا المستخدمة
اليوم . وهي تتألف من جهاز ثيودوليت إلكتروني ومكون إلكتروني لقياس المسافة ( EDM
) . تتوفر أيضا محطات روبوتية كاملة تتيح التشغيل لشخص واحد من خلال التحكم في الجهاز
باستخدام جهاز التحكم عن بعد . تاريخ
- '" تعريف " " المزواة " " . تردد الكلمات . المزواة ( اسم . أداة مسح لقياس الزوايا
الأفقية والرأسية ، وتتكون من تلسكوب صغير مثبت على حامل ثلاثي القوائم ، وهو مجاني
الحركة في المستويين الأفقي والعمودي . "'
- 'يمكن أن يحدث كسوف الشمس فقط خلال القمر الجديد ، عندما يتحرك القمر بين الأرض والشمس
وتشكل الأجرام السماوية الثلاثة خطا مستقيما : الأرض والقمر والشمس . هناك ثلاثة
أنواع من كسوف الشمس : الكلي ، الجزئي ، الحلقي . هناك أيضا هجين نادر هو مزيج من
خسوفين .'
- source_sentence: ما هو سماد المرحاض
sentences:
- 'توقعات مفصلة لكل ساعة . 1 0 صباحا : توقعات هاولي ، بنسلفانيا ليوم 11 أبريل هي
59 درجة وضباب . هناك فرصة بنسبة 58 بالمائة لسقوط أمطار ورياح 6 ميل في الساعة من
الجنوب الغربي . 2 3 صباحا : توقعات مدينة هاولي ، بنسلفانيا ليوم 11 أبريل هي 55
درجة وضبابية . هناك فرصة 60 بالمائة لسقوط أمطار ورياح 5 ميل في الساعة من الجنوب
الغربي .'
- مرحاض السماد هو نوع من المراحيض الجافة التي تستخدم نظام معالجة هوائيا في الغالب
لمعالجة الفضلات البشرية ، عن طريق التسميد أو التحلل الهوائي المدار . تستخدم هذه
المراحيض عموما القليل من الماء أو لا تستخدم على الإطلاق ويمكن استخدامها كبديل
لمراحيض الشطف .
- اتصل بي مالك العقار بخصوص مشكلة تتعلق بالمرحاض ، ولم يعمل أي من المكبس أو مثقاب
المرحاض ، وسحبت المرحاض لأجد لعبة كرة مطاطية تسد المرحاض . عمل المالك والمستأجر
على ذلك وقام المستأجر بدفع الفاتورة .
model-index:
- name: SentenceTransformer based on aubmindlab/araelectra-base-discriminator
results:
- task:
type: reranking
name: Reranking
dataset:
name: Unknown
type: unknown
metrics:
- type: map
value: 0.5517515590495886
name: Map
- type: mrr@10
value: 0.5556388888888889
name: Mrr@10
- type: ndcg@10
value: 0.6213073971291052
name: Ndcg@10
---
# SentenceTransformer based on aubmindlab/araelectra-base-discriminator
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [aubmindlab/araelectra-base-discriminator](https://huggingface.co/aubmindlab/araelectra-base-discriminator) on the [raraelectr_aand_raraber_tused_dataset](https://huggingface.co/datasets/hatemestinbejaia/RARAELECTRAandRARABERTusedDATASET) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [aubmindlab/araelectra-base-discriminator](https://huggingface.co/aubmindlab/araelectra-base-discriminator) <!-- at revision aaa9fba5575bd531d45cec3eccf24b755e0dccca -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [raraelectr_aand_raraber_tused_dataset](https://huggingface.co/datasets/hatemestinbejaia/RARAELECTRAandRARABERTusedDATASET)
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: ElectraModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("hatemestinbejaia/KDAraELECTRADPR_initialversion0")
# Run inference
sentences = [
'ما هو سماد المرحاض',
'مرحاض السماد هو نوع من المراحيض الجافة التي تستخدم نظام معالجة هوائيا في الغالب لمعالجة الفضلات البشرية ، عن طريق التسميد أو التحلل الهوائي المدار . تستخدم هذه المراحيض عموما القليل من الماء أو لا تستخدم على الإطلاق ويمكن استخدامها كبديل لمراحيض الشطف .',
'اتصل بي مالك العقار بخصوص مشكلة تتعلق بالمرحاض ، ولم يعمل أي من المكبس أو مثقاب المرحاض ، وسحبت المرحاض لأجد لعبة كرة مطاطية تسد المرحاض . عمل المالك والمستأجر على ذلك وقام المستأجر بدفع الفاتورة .',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Reranking
* Evaluated with [<code>RerankingEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.RerankingEvaluator)
| Metric | Value |
|:--------|:-----------|
| **map** | **0.5518** |
| mrr@10 | 0.5556 |
| ndcg@10 | 0.6213 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### raraelectr_aand_raraber_tused_dataset
* Dataset: [raraelectr_aand_raraber_tused_dataset](https://huggingface.co/datasets/hatemestinbejaia/RARAELECTRAandRARABERTusedDATASET) at [41662fd](https://huggingface.co/datasets/hatemestinbejaia/RARAELECTRAandRARABERTusedDATASET/tree/41662fd4d29d1cf849ca12213a7b27d69fe8fcd7)
* Size: 5,000,000 training samples
* Columns: <code>query</code>, <code>pos</code>, <code>neg</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | query | pos | neg | label |
|:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:--------------------------------------------------------------------|
| type | string | string | string | float |
| details | <ul><li>min: 4 tokens</li><li>mean: 8.89 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 77.44 tokens</li><li>max: 221 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 69.83 tokens</li><li>max: 184 tokens</li></ul> | <ul><li>min: -2.88</li><li>mean: 12.91</li><li>max: 21.92</li></ul> |
* Samples:
| query | pos | neg | label |
|:------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------|
| <code>القليل من الكافيين جيد أثناء الحمل</code> | <code>نحن لا نعرف الكثير عن تأثيرات الكافيين أثناء الحمل عليك وعلى طفلك . لذلك فمن الأفضل أن تحد من المبلغ الذي تحصل عليه كل يوم . إذا كنت حاملا ، قللي من تناول الكافيين إلى 200 ملليجرام يوميا . هذا هو الكمية الموجودة في فنجان واحد سعة 8 أونصات من القهوة أو فنجان قهوة سعة 12 أونصة .</code> | <code>من الآمن عموما أن تتناول النساء الحوامل الشوكولاتة لأن الدراسات أثبتت وجود فوائد معينة لتناول الشوكولاتة أثناء الحمل . ومع ذلك ، يجب على النساء الحوامل التأكد من أن تناول الكافيين أقل من 200 مجم في اليوم .</code> | <code>4.0280589908361435</code> |
| <code>ما هي الفاكهة الأصلية في أستراليا</code> | <code>Passiflora herbertiana . فاكهة العاطفة النادرة موطنها أستراليا . الثمار ذات قشرة خضراء ، بيضاء اللون ، مع تصنيف غير معروف للأكل . تسرد بعض المصادر الفاكهة على أنها صالحة للأكل وحلوة ولذيذة ، بينما يسرد البعض الآخر الفاكهة على أنها مرة وغير صالحة للأكل . فاكهة العاطفة النادرة موطنها أستراليا . الثمار ذات قشرة خضراء ، بيضاء اللون ، مع تصنيف غير معروف للأكل . تسرد بعض المصادر الفاكهة على أنها صالحة للأكل وحلوة ولذيذة ، بينما يسرد البعض الآخر الفواكه على أنها مرة وغير صالحة للأكل .</code> | <code>جوز الكولا هو ثمرة شجرة الكولا ، وهي جنس ( كولا ) من الأشجار التي تنتمي إلى الغابات الاستوائية المطيرة في إفريقيا .</code> | <code>10.18145449956258</code> |
| <code>ما هو حجم الجيش الكندي</code> | <code>القوات المسلحة الكندية . 1 بدأت أول مهمة حفظ سلام كندية واسعة النطاق في مصر في 24 نوفمبر 1956 . 2 هناك ما يقرب من 65000 من القوات النظامية و 25000 من أفراد الاحتياط في الجيش الكندي . 3 في كندا ، تم تحديد يوم 9 أغسطس كيوم حفظة السلام الوطنيين .</code> | <code>المعهد الكندي لصحة الأطباء ( CPHI ) هو برنامج وطني تم إنشاؤه في عام 2012 كتعاون بين الجمعية الطبية الكندية ( CMA ) والمؤسسة الطبية الكندية ( CMF ) والجمعيات الطبية الإقليمية والإقليمية ( PTMAs ) .</code> | <code>16.420575777689614</code> |
* Loss: <code>__main__.MarginMSELoss</code>
### Evaluation Dataset
#### raraelectr_aand_raraber_tused_dataset
* Dataset: [raraelectr_aand_raraber_tused_dataset](https://huggingface.co/datasets/hatemestinbejaia/RARAELECTRAandRARABERTusedDATASET) at [41662fd](https://huggingface.co/datasets/hatemestinbejaia/RARAELECTRAandRARABERTusedDATASET/tree/41662fd4d29d1cf849ca12213a7b27d69fe8fcd7)
* Size: 10,000 evaluation samples
* Columns: <code>query</code>, <code>pos</code>, <code>neg</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | query | pos | neg | label |
|:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:--------------------------------------------------------------------|
| type | string | string | string | float |
| details | <ul><li>min: 3 tokens</li><li>mean: 8.69 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 73.9 tokens</li><li>max: 202 tokens</li></ul> | <ul><li>min: 21 tokens</li><li>mean: 71.16 tokens</li><li>max: 171 tokens</li></ul> | <ul><li>min: -0.75</li><li>mean: 13.72</li><li>max: 22.62</li></ul> |
* Samples:
| query | pos | neg | label |
|:-----------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------|
| <code>ما هو اسم د . كوين</code> | <code>اعرض الشخصيات المختلفة التي لعبها نفس الممثل . الدكتورة ميكايلا كوين . ولدت ميكايلا في 15 فبراير 1833 في بوسطن ، ماساتشوستس ، لأبوين جوزيف وإليزابيث كوين . هناك نشأت مع شقيقاتها الأربع : ماري ( التي تم تغيير اسمها إلى ريبيكا ) ، ومارجوري ، وكلوديت ، ومورين . كان والدها يريد ابنا ، لذلك عندما ولدت أطلق عليها اسم ميكايلا ( الملقب مايك ) .</code> | <code>ليس لدى د . ماكفارلاند أي تأمينات مدرجة . إذا كنت دكتور ماكفارلاند وترغب في إضافة تأمينات تقبلها ، يرجى تحديث ملفك التعريفي المجاني . الانتساب إلى المستشفى ينتمي د . ماكفارلاند إلى المستشفيات التالية .</code> | <code>15.524045944213867</code> |
| <code>من يلعب دور بيرني مادوف</code> | <code>ساحر الأكاذيب هو واحد من اثنين من مشاريع Madoff التلفزيونية قيد الإعداد . ABC لديها مسلسل قصير قادم يسمى مادوف ، من بطولة ريتشارد دريفوس وبليث دانر . قصص ذات الصلة . روبرت دي نيرو يسجل الدخول للعب بيرني مادوف في فيلم HBO المحتمل .</code> | <code>اتهمت السلطات الأمريكية مسؤول تنفيذي للمحاسبة يزعم أنه ساعد برنارد مادوف في مخطط بونزي الذي تبلغ تكلفته عدة مليارات من الدولارات ، والذي يوسع نطاق تحقيقه في الاحتيال بعد خمس سنوات من اكتشافه .</code> | <code>13.17703644434611</code> |
| <code>كم قدم مكعب في طن من حصى البازلاء</code> | <code>لذلك 1 طن لديه 2000 - 100 أو 20 قدم مكعب من الحصى . الفناء المكعب هو 3x3x3 = 27 قدما مكعبا من الفناء المكعب ، الإجابة 20 - 27 أو 0 . 74 ياردة مكعبة . العوامل الأخرى التي تؤثر على حجم الحصى هي محتوى الرطوبة ودرجات المواد . يحتوي حصى البازلاء على سبيل المثال على جميع الجزيئات ذات الحجم المحدد ، على سبيل المثال ، 1 - 4 بوصة ، حوالي 120 رطلا للإشارة فقط : 1 قدم مكعب = 6 . 25 جالون ( إمبراطوري ) ، جالون من الماء يزن 10 أرطال ، لذا فإن القدم المكعبة من الماء تزن 62 . 5 رطلا . هذا يعني أن الجاذبية النوعية للحصى هي 120 - 62 . 5 ، أو أقل قليلا من 2 .</code> | <code>1 كيس قدم مكعب واحد ( التربة والمهاد ) يغطي ما يقرب من 8 أقدام مربعة إلى عمق 3 . 2 كيس واحد 75 رطلا ( الحصى والرمل ) يغطي حوالي 4 أقدام مربعة إلى عمق 3 . 3 بوصات سميكة ستغطي حوالي 300 قدم مربع . سيغطي سمك 1 حوالي 150 قدما مربعا .</code> | <code>10.34702980518341</code> |
* Loss: <code>__main__.MarginMSELoss</code>
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `gradient_accumulation_steps`: 8
- `learning_rate`: 7e-05
- `warmup_ratio`: 0.07
- `fp16`: True
- `half_precision_backend`: amp
- `load_best_model_at_end`: True
- `fp16_backend`: amp
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 8
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 7e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.07
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: amp
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: amp
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss | map |
|:------:|:-----:|:-------------:|:---------------:|:------:|
| 2.0992 | 82000 | 0.0002 | 0.0009 | 0.5416 |
| 2.1504 | 84000 | 0.0002 | 0.0009 | 0.5459 |
| 2.2016 | 86000 | 0.0002 | 0.0009 | 0.5404 |
| 2.2528 | 88000 | 0.0002 | 0.0009 | 0.5455 |
| 2.3040 | 90000 | 0.0002 | 0.0008 | 0.5518 |
### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.3.1
- Transformers: 4.45.1
- PyTorch: 2.4.0
- Accelerate: 0.34.2
- Datasets: 3.0.1
- Tokenizers: 0.20.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MarginMSELoss
```bibtex
@misc{hofstätter2021improving,
title={Improving Efficient Neural Ranking Models with Cross-Architecture Knowledge Distillation},
author={Sebastian Hofstätter and Sophia Althammer and Michael Schröder and Mete Sertkan and Allan Hanbury},
year={2021},
eprint={2010.02666},
archivePrefix={arXiv},
primaryClass={cs.IR}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->