|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: muchad/idt5-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
- bleu |
|
model-index: |
|
- name: idt5-base-qaqg |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# idt5-base-qaqg |
|
|
|
This model is a fine-tuned version of [muchad/idt5-base](https://huggingface.co/muchad/idt5-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.2262 |
|
- Rouge1: 0.4339 |
|
- Rouge2: 0.2405 |
|
- Rougel: 0.4040 |
|
- Rougelsum: 0.4051 |
|
- Bleu: 0.1913 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:------:| |
|
| 1.413 | 1.0 | 4695 | 1.3393 | 0.4005 | 0.2102 | 0.3742 | 0.3750 | 0.1641 | |
|
| 1.2176 | 2.0 | 9390 | 1.2736 | 0.4212 | 0.2289 | 0.3924 | 0.3933 | 0.1809 | |
|
| 1.1113 | 3.0 | 14085 | 1.2329 | 0.4270 | 0.2343 | 0.3978 | 0.3990 | 0.1851 | |
|
| 1.028 | 4.0 | 18780 | 1.2241 | 0.4335 | 0.2383 | 0.4035 | 0.4045 | 0.1901 | |
|
| 0.9813 | 5.0 | 23475 | 1.2262 | 0.4339 | 0.2405 | 0.4040 | 0.4051 | 0.1913 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.0 |
|
- Pytorch 2.4.0a0+f70bd71a48.nv24.06 |
|
- Datasets 3.0.2 |
|
- Tokenizers 0.20.1 |
|
|