|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: muchad/idt5-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
- bleu |
|
model-index: |
|
- name: idt5-base-qaqg_v3 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# idt5-base-qaqg_v3 |
|
|
|
This model is a fine-tuned version of [muchad/idt5-base](https://huggingface.co/muchad/idt5-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.2682 |
|
- Rouge1: 0.4226 |
|
- Rouge2: 0.2332 |
|
- Rougel: 0.3923 |
|
- Rougelsum: 0.3933 |
|
- Bleu: 0.1876 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:------:| |
|
| 1.381 | 1.0 | 4695 | 1.4000 | 0.3908 | 0.2059 | 0.3639 | 0.3646 | 0.1639 | |
|
| 1.2256 | 2.0 | 9390 | 1.3096 | 0.4033 | 0.2145 | 0.3754 | 0.3762 | 0.1712 | |
|
| 1.1113 | 3.0 | 14085 | 1.2807 | 0.4156 | 0.2262 | 0.3859 | 0.3867 | 0.1808 | |
|
| 1.0142 | 4.0 | 18780 | 1.2694 | 0.4198 | 0.2301 | 0.3895 | 0.3906 | 0.1864 | |
|
| 0.9693 | 5.0 | 23475 | 1.2682 | 0.4226 | 0.2332 | 0.3923 | 0.3933 | 0.1876 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.0 |
|
- Pytorch 2.4.0a0+f70bd71a48.nv24.06 |
|
- Datasets 3.0.2 |
|
- Tokenizers 0.20.1 |
|
|