|
--- |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- feature-extraction |
|
- sentence-similarity |
|
- transformers |
|
- dpr |
|
widget: |
|
- source_sentence: "আমি বাংলায় গান গাই" |
|
sentences: |
|
- "I sing in Bangla" |
|
- "I sing in Bengali" |
|
- "I sing in English" |
|
- "আমি গান গাই না " |
|
example_title: "Singing" |
|
--- |
|
|
|
# `semantic_xlmr` |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like **clustering** or **semantic search**. |
|
|
|
<!--- Describe your model here --> |
|
|
|
## Model Details |
|
|
|
- Model name: semantic_xlmr |
|
- Model version: 1.0 |
|
- Architecture: Sentence Transformer |
|
- Language: Multilingual ( fine-tuned for Bengali Language) |
|
|
|
## Training |
|
|
|
The model was fine-tuned using **Multilingual Knowledge Distillation** method. We took `paraphrase-distilroberta-base-v2` as the teacher model and `xlm-roberta-large` as the student model. |
|
|
|
|
|
|
|
 |
|
|
|
## Intended Use: |
|
|
|
- **Primary Use Case:** Semantic similarity, clustering, and semantic searches |
|
- **Potential Use Cases:** Document retrieval, information retrieval, recommendation systems, chatbot systems , FAQ system |
|
|
|
## Usage |
|
|
|
### Using Sentence-Transformers |
|
|
|
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: |
|
|
|
``` |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can use the model like this: |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
sentences = ["I sing in bengali", "আমি বাংলায় গান গাই"] |
|
|
|
model = SentenceTransformer('headlesstech/semantic_xlmr') |
|
embeddings = model.encode(sentences) |
|
print(embeddings) |
|
``` |
|
|
|
### Using HuggingFace Transformers |
|
|
|
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModel |
|
import torch |
|
|
|
|
|
#Mean Pooling - Take attention mask into account for correct averaging |
|
def mean_pooling(model_output, attention_mask): |
|
token_embeddings = model_output[0] #First element of model_output contains all token embeddings |
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() |
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) |
|
|
|
|
|
# Sentences we want sentence embeddings for |
|
sentences = ["I sing in bengali", "আমি বাংলায় গান গাই"] |
|
|
|
# Load model from HuggingFace Hub |
|
tokenizer = AutoTokenizer.from_pretrained('headlesstech/semantic_xlmr') |
|
model = AutoModel.from_pretrained('headlesstech/semantic_xlmr') |
|
|
|
# Tokenize sentences |
|
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') |
|
|
|
# Compute token embeddings |
|
with torch.no_grad(): |
|
model_output = model(**encoded_input) |
|
|
|
# Perform pooling. In this case, mean pooling. |
|
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) |
|
|
|
print("Sentence embeddings:") |
|
print(sentence_embeddings) |
|
``` |
|
|
|
## Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) |
|
) |
|
``` |
|
|