|
--- |
|
language: en |
|
license: mit |
|
base_model: mlx-community/Qwen2.5-1.5B-Instruct-4bit |
|
tags: |
|
- mlx |
|
- intent-detection |
|
- fine-tuned |
|
- knowledge-management |
|
- ios |
|
library_name: mlx |
|
--- |
|
|
|
# knowledgebase-intent-llm |
|
|
|
Fine-tuned model for intent detection in a knowledge management iOS app. |
|
|
|
## Model Details |
|
|
|
- **Base Model**: mlx-community/Qwen2.5-1.5B-Instruct-4bit |
|
- **Model Type**: intent_detection |
|
- **Format**: complete_merged |
|
- **Framework**: MLX |
|
- **Training Examples**: 5000 |
|
- **Training Iterations**: 100 |
|
|
|
## Usage |
|
|
|
```python |
|
from mlx_lm import load, generate |
|
|
|
# Load the model |
|
model, tokenizer = load("hebertgo/knowledgebase-intent-llm") |
|
|
|
# Generate intent classification |
|
prompt = '''You are a helpful AI assistant for a knowledge-management app on an iPhone. Analyze the user's request and respond with JSON in this format: |
|
{ |
|
"action": "Search|Create|Clarify|Conversation", |
|
"response": "User-friendly response message", |
|
"contentType": "videos|bookmarks|todos", |
|
"topic": "extracted topic or null" |
|
} |
|
|
|
User query: find videos about python''' |
|
|
|
response = generate(model, tokenizer, prompt=prompt, max_tokens=256) |
|
print(response) |
|
``` |
|
|
|
## iOS Integration |
|
|
|
This model is designed for use in iOS apps with MLX Swift: |
|
|
|
```swift |
|
let config = ModelConfiguration( |
|
id: "hebertgo/knowledgebase-intent-llm", |
|
defaultPrompt: "" |
|
) |
|
|
|
let model = try await LLMModelFactory.shared.loadContainer( |
|
configuration: config |
|
) |
|
``` |
|
|
|
## Training Details |
|
|
|
- **Fine-tuning Method**: LoRA with model fusion |
|
- **Export Date**: 2025-06-24T17:12:38.111419 |
|
- **Fusion Completed**: True |
|
|
|
## Expected Outputs |
|
|
|
The model generates JSON responses with these action types: |
|
- **Search**: Find existing content (videos, bookmarks, todos) |
|
- **Create**: Add new content |
|
- **Clarify**: Request more information |
|
- **Conversation**: General chat responses |
|
|
|
Content types supported: |
|
- videos |
|
- bookmarks |
|
- todos |
|
|
|
## Performance |
|
|
|
Optimized for Apple Silicon devices with MLX framework for efficient on-device inference. |
|
|