hellork's picture
Update README.md
de73371 verified
|
raw
history blame
5.31 kB
metadata
base_model: AdaptLLM/finance-chat
datasets:
  - Open-Orca/OpenOrca
  - GAIR/lima
  - WizardLM/WizardLM_evol_instruct_V2_196k
language:
  - en
license: llama2
metrics:
  - accuracy
pipeline_tag: text-generation
tags:
  - finance
  - llama-cpp
  - gguf-my-repo
model-index:
  - name: finance-chat
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 53.75
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AdaptLLM/finance-chat
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 76.6
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AdaptLLM/finance-chat
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 50.16
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AdaptLLM/finance-chat
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 44.54
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AdaptLLM/finance-chat
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 75.69
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AdaptLLM/finance-chat
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 18.8
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AdaptLLM/finance-chat
          name: Open LLM Leaderboard

hellork/finance-chat-IQ4_NL-GGUF

This model was converted to GGUF format from AdaptLLM/finance-chat using llama.cpp via the ggml.ai's GGUF-my-repo space. Refer to the original model card for more details on the model.

Use with llama.cpp

Install llama.cpp through brew (works on Mac and Linux)

brew install llama.cpp

Invoke the llama.cpp server or the CLI.

CLI:

llama-cli --hf-repo hellork/finance-chat-IQ4_NL-GGUF --hf-file finance-chat-iq4_nl-imat.gguf -p "The meaning to life and the universe is"

Server:

llama-server --hf-repo hellork/finance-chat-IQ4_NL-GGUF --hf-file finance-chat-iq4_nl-imat.gguf -c 2048

The Ship's Computer:

Interact with this model by speaking to it. Lean, fast, & private, networked speech to text, AI images, multi-modal voice chat, control apps, webcam, and sound with less than 4GiB of VRAM. whisper_dictation

Quick start

git clone -b main --single-branch https://github.com/themanyone/whisper_dictation.git
pip install -r whisper_dictation/requirements.txt

git clone https://github.com/ggerganov/whisper.cpp
cd whisper.cpp
GGML_CUDA=1 make -j # assuming CUDA is available. see docs
ln -s server ~/.local/bin/whisper_cpp_server # (just put it somewhere in $PATH)
whisper_cpp_server -l en -m models/ggml-tiny.en.bin --port 7777

# -ngl option assumes CUDA or othr AI acceleration is available. see docs
llama-server --hf-repo hellork/finance-chat-IQ4_NL-GGUF --hf-file finance-chat-iq4_nl-imat.gguf -c 2048 -ngl 17 --port 8888

cd whisper_dictation
./whisper_cpp_client.py

Install llama.cpp via git:

Step 1: Clone llama.cpp from GitHub.

git clone https://github.com/ggerganov/llama.cpp

Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1 flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).

cd llama.cpp && LLAMA_CURL=1 make

Step 3: Run inference through the main binary.

./llama-cli --hf-repo hellork/finance-chat-IQ4_NL-GGUF --hf-file finance-chat-iq4_nl-imat.gguf -p "The meaning to life and the universe is"

or

./llama-server --hf-repo hellork/finance-chat-IQ4_NL-GGUF --hf-file finance-chat-iq4_nl-imat.gguf -c 2048