metadata
license: other
base_model: nvidia/mit-b0
tags:
- image-segmentation
- vision
- generated_from_trainer
model-index:
- name: segformer-finetuned-biofilm2_train
results: []
segformer-finetuned-biofilm2_train
This model is a fine-tuned version of nvidia/mit-b0 on the heroza/biofilm2_train dataset. It achieves the following results on the evaluation set:
- Loss: 0.0761
- Mean Iou: 0.8665
- Mean Accuracy: 0.9765
- Overall Accuracy: 0.9745
- Accuracy Background: 0.9741
- Accuracy Biofilm: 0.9789
- Iou Background: 0.9722
- Iou Biofilm: 0.7608
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: polynomial
- training_steps: 10000
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Biofilm | Iou Background | Iou Biofilm |
---|---|---|---|---|---|---|---|---|---|---|
0.1611 | 1.0 | 298 | 0.1220 | 0.8393 | 0.9547 | 0.9687 | 0.9714 | 0.9379 | 0.9660 | 0.7126 |
0.07 | 2.0 | 596 | 0.0682 | 0.8795 | 0.9359 | 0.9795 | 0.9881 | 0.8837 | 0.9779 | 0.7811 |
0.0542 | 3.0 | 894 | 0.0564 | 0.8862 | 0.9735 | 0.9793 | 0.9805 | 0.9666 | 0.9775 | 0.7948 |
0.0508 | 4.0 | 1192 | 0.0517 | 0.8888 | 0.9728 | 0.9799 | 0.9814 | 0.9643 | 0.9782 | 0.7993 |
0.0491 | 5.0 | 1490 | 0.0479 | 0.8999 | 0.9727 | 0.9824 | 0.9843 | 0.9611 | 0.9809 | 0.8190 |
0.0496 | 6.0 | 1788 | 0.0665 | 0.8733 | 0.9728 | 0.9764 | 0.9770 | 0.9686 | 0.9743 | 0.7724 |
0.047 | 7.0 | 2086 | 0.0475 | 0.8936 | 0.9744 | 0.9810 | 0.9823 | 0.9664 | 0.9793 | 0.8079 |
0.0403 | 8.0 | 2384 | 0.0513 | 0.8897 | 0.9699 | 0.9803 | 0.9823 | 0.9575 | 0.9786 | 0.8008 |
0.0336 | 9.0 | 2682 | 0.0597 | 0.8736 | 0.9790 | 0.9761 | 0.9756 | 0.9824 | 0.9740 | 0.7732 |
0.036 | 10.0 | 2980 | 0.0602 | 0.8789 | 0.9781 | 0.9774 | 0.9773 | 0.9789 | 0.9755 | 0.7824 |
0.0335 | 11.0 | 3278 | 0.0519 | 0.8849 | 0.9670 | 0.9793 | 0.9818 | 0.9522 | 0.9775 | 0.7923 |
0.0364 | 12.0 | 3576 | 0.0684 | 0.8718 | 0.9810 | 0.9756 | 0.9745 | 0.9874 | 0.9734 | 0.7702 |
0.0423 | 13.0 | 3874 | 0.0637 | 0.8767 | 0.9742 | 0.9771 | 0.9777 | 0.9707 | 0.9751 | 0.7783 |
0.0354 | 14.0 | 4172 | 0.0618 | 0.8773 | 0.9692 | 0.9775 | 0.9791 | 0.9593 | 0.9755 | 0.7790 |
0.0335 | 15.0 | 4470 | 0.0547 | 0.8788 | 0.9686 | 0.9778 | 0.9797 | 0.9574 | 0.9759 | 0.7816 |
0.0318 | 16.0 | 4768 | 0.0567 | 0.8841 | 0.9744 | 0.9788 | 0.9797 | 0.9691 | 0.9770 | 0.7913 |
0.0296 | 17.0 | 5066 | 0.0653 | 0.8678 | 0.9741 | 0.9749 | 0.9751 | 0.9732 | 0.9727 | 0.7628 |
0.0291 | 18.0 | 5364 | 0.0591 | 0.8757 | 0.9718 | 0.9770 | 0.9780 | 0.9657 | 0.9750 | 0.7765 |
0.0311 | 19.0 | 5662 | 0.0716 | 0.8682 | 0.9753 | 0.9750 | 0.9749 | 0.9756 | 0.9728 | 0.7637 |
0.0322 | 20.0 | 5960 | 0.0837 | 0.8506 | 0.9773 | 0.9703 | 0.9690 | 0.9857 | 0.9677 | 0.7335 |
0.0317 | 21.0 | 6258 | 0.0728 | 0.8673 | 0.9749 | 0.9748 | 0.9747 | 0.9751 | 0.9726 | 0.7621 |
0.0318 | 22.0 | 6556 | 0.0571 | 0.8796 | 0.9764 | 0.9777 | 0.9779 | 0.9748 | 0.9757 | 0.7835 |
0.0288 | 23.0 | 6854 | 0.0734 | 0.8689 | 0.9798 | 0.9749 | 0.9739 | 0.9858 | 0.9727 | 0.7651 |
0.0271 | 24.0 | 7152 | 0.0763 | 0.8615 | 0.9757 | 0.9733 | 0.9728 | 0.9785 | 0.9709 | 0.7521 |
0.0236 | 25.0 | 7450 | 0.0615 | 0.8789 | 0.9761 | 0.9775 | 0.9778 | 0.9744 | 0.9756 | 0.7823 |
0.025 | 26.0 | 7748 | 0.0694 | 0.8684 | 0.9768 | 0.9750 | 0.9746 | 0.9790 | 0.9727 | 0.7640 |
0.0269 | 27.0 | 8046 | 0.0672 | 0.8700 | 0.9688 | 0.9757 | 0.9771 | 0.9605 | 0.9736 | 0.7664 |
0.0286 | 28.0 | 8344 | 0.0717 | 0.8695 | 0.9761 | 0.9753 | 0.9751 | 0.9771 | 0.9731 | 0.7659 |
0.0255 | 29.0 | 8642 | 0.0680 | 0.8696 | 0.9757 | 0.9753 | 0.9752 | 0.9761 | 0.9731 | 0.7661 |
0.0255 | 30.0 | 8940 | 0.0701 | 0.8691 | 0.9756 | 0.9752 | 0.9751 | 0.9762 | 0.9730 | 0.7651 |
0.0223 | 31.0 | 9238 | 0.0715 | 0.8687 | 0.9746 | 0.9751 | 0.9752 | 0.9740 | 0.9730 | 0.7644 |
0.0226 | 32.0 | 9536 | 0.0757 | 0.8667 | 0.9770 | 0.9745 | 0.9740 | 0.9799 | 0.9723 | 0.7612 |
0.022 | 33.0 | 9834 | 0.0773 | 0.8661 | 0.9766 | 0.9744 | 0.9739 | 0.9793 | 0.9721 | 0.7601 |
0.0217 | 33.56 | 10000 | 0.0761 | 0.8665 | 0.9765 | 0.9745 | 0.9741 | 0.9789 | 0.9722 | 0.7608 |
Framework versions
- Transformers 4.38.0.dev0
- Pytorch 2.0.0+cu117
- Datasets 2.14.4
- Tokenizers 0.15.1