segformer-finetuned-biofilm_MRCNNv1_train

This model is a fine-tuned version of nvidia/mit-b0 on the heroza/biofilm_MRCNNv1_train dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0003
  • Mean Iou: 0.5000
  • Mean Accuracy: 1.0000
  • Overall Accuracy: 1.0000
  • Accuracy Background: 1.0000
  • Accuracy Biofilm: nan
  • Iou Background: 1.0000
  • Iou Biofilm: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 1337
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: polynomial
  • training_steps: 10000

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Background Accuracy Biofilm Iou Background Iou Biofilm
0.262 1.0 136 0.0895 0.4984 0.9968 0.9968 0.9968 nan 0.9968 0.0
0.0826 2.0 272 0.0225 0.4995 0.9990 0.9990 0.9990 nan 0.9990 0.0
0.0225 3.0 408 0.0228 0.4985 0.9971 0.9971 0.9971 nan 0.9971 0.0
0.0141 4.0 544 0.0116 0.4997 0.9995 0.9995 0.9995 nan 0.9995 0.0
0.0093 5.0 680 0.0069 0.4996 0.9993 0.9993 0.9993 nan 0.9993 0.0
0.0054 6.0 816 0.0042 0.4999 0.9999 0.9999 0.9999 nan 0.9999 0.0
0.004 7.0 952 0.0030 0.5000 0.9999 0.9999 0.9999 nan 0.9999 0.0
0.0034 8.0 1088 0.0027 0.4999 0.9998 0.9998 0.9998 nan 0.9998 0.0
0.0024 9.0 1224 0.0021 0.4999 0.9999 0.9999 0.9999 nan 0.9999 0.0
0.0021 10.0 1360 0.0015 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0017 11.0 1496 0.0019 0.4999 0.9999 0.9999 0.9999 nan 0.9999 0.0
0.0014 12.0 1632 0.0015 0.4999 0.9999 0.9999 0.9999 nan 0.9999 0.0
0.0012 13.0 1768 0.0010 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0009 14.0 1904 0.0010 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0008 15.0 2040 0.0009 0.5000 0.9999 0.9999 0.9999 nan 0.9999 0.0
0.0008 16.0 2176 0.0008 0.5000 0.9999 0.9999 0.9999 nan 0.9999 0.0
0.0006 17.0 2312 0.0009 0.4999 0.9999 0.9999 0.9999 nan 0.9999 0.0
0.0007 18.0 2448 0.0005 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0006 19.0 2584 0.0010 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0005 20.0 2720 0.0004 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0004 21.0 2856 0.0005 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0004 22.0 2992 0.0004 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0003 23.0 3128 0.0003 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0004 24.0 3264 0.0003 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0003 25.0 3400 0.0003 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0002 26.0 3536 0.0003 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0003 27.0 3672 0.0002 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0002 28.0 3808 0.0003 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0002 29.0 3944 0.0003 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0002 30.0 4080 0.0002 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0002 31.0 4216 0.0002 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0001 32.0 4352 0.0002 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0002 33.0 4488 0.0001 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0001 34.0 4624 0.0002 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0001 35.0 4760 0.0001 1.0 1.0 1.0 1.0 nan 1.0 nan
0.0002 36.0 4896 0.0001 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0001 37.0 5032 0.0001 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0001 38.0 5168 0.0001 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0001 39.0 5304 0.0001 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0001 40.0 5440 0.0001 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0001 41.0 5576 0.0001 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0001 42.0 5712 0.0001 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0001 43.0 5848 0.0001 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0001 44.0 5984 0.0001 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0001 45.0 6120 0.0001 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0001 46.0 6256 0.0001 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0001 47.0 6392 0.0000 1.0 1.0 1.0 1.0 nan 1.0 nan
0.0001 48.0 6528 0.0000 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0001 49.0 6664 0.0001 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0001 50.0 6800 0.0001 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0001 51.0 6936 0.0001 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0001 52.0 7072 0.0001 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0001 53.0 7208 0.0001 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0001 54.0 7344 0.0002 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0001 55.0 7480 0.0001 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0001 56.0 7616 0.0001 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0001 57.0 7752 0.0003 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0001 58.0 7888 0.0002 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0001 59.0 8024 0.0004 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0001 60.0 8160 0.0002 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0001 61.0 8296 0.0002 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0001 62.0 8432 0.0002 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0001 63.0 8568 0.0003 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0001 64.0 8704 0.0002 1.0 1.0 1.0 1.0 nan 1.0 nan
0.0001 65.0 8840 0.0003 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0001 66.0 8976 0.0003 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0001 67.0 9112 0.0003 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0001 68.0 9248 0.0003 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0001 69.0 9384 0.0003 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0001 70.0 9520 0.0003 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0001 71.0 9656 0.0003 1.0 1.0 1.0 1.0 nan 1.0 nan
0.0001 72.0 9792 0.0003 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0001 73.0 9928 0.0003 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0
0.0001 73.53 10000 0.0003 0.5000 1.0000 1.0000 1.0000 nan 1.0000 0.0

Framework versions

  • Transformers 4.38.0.dev0
  • Pytorch 2.0.0+cu117
  • Datasets 2.14.4
  • Tokenizers 0.15.1
Downloads last month
20
Safetensors
Model size
3.72M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for heroza/segformer-finetuned-biofilm_MRCNNv1_train

Base model

nvidia/mit-b0
Finetuned
(347)
this model