File size: 59,771 Bytes
47045ec
33d85c5
 
 
 
 
 
 
47045ec
33d85c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47045ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33d85c5
47045ec
 
33d85c5
47045ec
 
33d85c5
47045ec
 
33d85c5
47045ec
 
33d85c5
47045ec
 
33d85c5
47045ec
 
33d85c5
47045ec
 
33d85c5
47045ec
 
33d85c5
47045ec
 
33d85c5
47045ec
 
33d85c5
47045ec
 
33d85c5
47045ec
 
33d85c5
47045ec
 
33d85c5
47045ec
 
33d85c5
47045ec
 
33d85c5
47045ec
 
 
 
 
 
 
 
 
 
 
 
 
33d85c5
47045ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33d85c5
 
 
47045ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33d85c5
47045ec
 
 
 
 
33d85c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47045ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33d85c5
47045ec
33d85c5
 
 
 
 
47045ec
33d85c5
 
 
 
 
47045ec
 
 
 
 
 
 
 
 
 
 
 
 
 
33d85c5
47045ec
33d85c5
 
 
 
 
47045ec
33d85c5
 
 
 
 
47045ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33d85c5
47045ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33d85c5
47045ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33d85c5
47045ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33d85c5
47045ec
33d85c5
 
47045ec
 
 
 
 
 
 
 
33d85c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47045ec
 
 
 
33d85c5
 
 
 
47045ec
33d85c5
47045ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:3507
- loss:GISTEmbedLoss
base_model: BAAI/bge-small-en-v1.5
widget:
- source_sentence: What skills and traditions do the Akharas display?
  sentences:
  - "Are there specific vendors recommended for tent city booking?\n Yes, there are\
    \ 7 approved vendors for setting up bookings in the Tent City for Kumbh Mela including\
    \ : UP Tourism Tent Colony; Rishikul Kumbh Cottages; Aagman Maha Kumbh; Kumbh\
    \ Village; Kumbh Camp India; Shivadya Kumbh Canvas. For more information about\
    \ these vendors and their services, please click here"
  - The Akharas display a wide range of skills and traditions that reflect their deep
    spiritual heritage and ascetic practices. These include martial arts training,
    such as wrestling, sword fighting, and the use of traditional weapons like tridents
    (trishuls), maces (gada), and spears. Such skills symbolize their readiness to
    protect Dharma and their spiritual communities. Additionally, Akharas emphasize
    the tradition of Yoga and meditation, teaching various asanas and techniques for
    self-discipline and spiritual growth. They also focus on Vedic rituals, chanting,
    and sacred ceremonies to maintain their connection with the divine. Akharas uphold
    the practice of 'Vairagya' or renunciation, where sadhus detach from worldly desires
    to pursue a path of spiritual enlightenment. These traditions are on full display
    during the Kumbh Mela, especially during the Shahi Snan, where the Naga Sadhus
    lead the processions with their unique practices and skills.
  - On a bright summer afternoon, the children gathered at the edge of the park, their
    laughter echoing through the trees. They played games, running around with colorful
    kites soaring high against the azure sky. Some kids chose to ride their bicycles
    along the winding paths, while others set up a picnic with sandwiches and juice
    boxes spread out on a checkered blanket. Nearby, a couple of dogs chased each
    other joyfully, their tails wagging with uncontainable excitement as the scent
    of fresh grass filled the air. The sun slowly dipped toward the horizon, casting
    a warm golden glow, and everyone paused to watch the beauty of the sunset while
    sharing stories, bonding over the simple joys of life. The day shimmered with
    happiness, creating memories that would last long after the sun had set.
- source_sentence: Refund kab milega
  sentences:
  - "How late can I make changes to my booking before the tour date?\n Refunds and\
    \ changes to bookings are subject to the following cancellation policy:\n \n 15\
    \ days or more in advance: 90% of the booking amount will be refunded\n 10-15\
    \ days in advance: 75% of the booking amount will be refunded\n 3-10 days in advance:\
    \ 50% of the booking amount will be refunded\n Less than 3 days in advance: No\
    \ refund\n \n Please make any changes or cancellations well in advance to avoid\
    \ forfeiting your booking amount."
  - "Is there any provision for women-only E-Rickshaws for added safety and comfort?\n\
    \ No, there is no provision for women-only E-Rickshaws"
  - 'Can I pay for the tour in installments?

    No, the tour fee must be paid in full at the time of booking. Unfortunately, installment
    plans are not available. Ensure that full payment is made to secure your booking
    well in advance.'
- source_sentence: Are there any dedicated helpdesks or kiosks at the Airport for
    information about transport to the Mela?
  sentences:
  - The forest is alive with the sounds of rustling leaves and chirping birds. As
    the sun rises, a golden light filters through the trees, creating a magical atmosphere.
    Walkers often find solace in nature, where the peaceful surroundings can soothe
    the mind and inspire creativity. Each path taken may lead to a hidden waterfall
    or a scenic overlook, inviting exploration and adventure.
  - "What is Aarti\n In India, since ancient times, rivers are worshipped due to their\
    \ importance to the human life. \n \n Likewise, in Tirathraj Prayagraj, Aartis’\
    \ are performed on the banks of Ganga, Yamuna and at Sangam with great admiration,\
    \ deep-rooted honor and devotion. In Prayagraj, Prayagraj Mela Authority and various\
    \ other communities make grand arrangements for these Aartis.\n \n The Aartis\
    \ are performed in the mornings and evenings, in which priests (Batuks), normally\
    \ 5 to 7 in number, chant hymns with great fervor, holding meticulously designed\
    \ lamps and worship the rivers with utmost devotion. \n \n The lamps held by the\
    \ batuks represent the importance of panchtatva. On one hand, flames of the lamps\
    \ signify bowing to the waters of the sacred rivers and on the other, the holy\
    \ fumes emanating from the lamps appear to play the mystic of heaven on earth.\
    \ \n  List of Aliases: [['Prayag', 'Sangam'], ['Allahabad', 'PYG', 'Prayagraj'],\
    \ ['Batuks', 'priests']]"
  - Yes, there are people available to help you with transport information at the
    airport. Tourist information centers would also be available across the city to
    guide pilgrims to the Mela.
- source_sentence: Peeshwai Akhara time
  sentences:
  - "What is the connection between Akharas and Shahi Snan?\nAkharas are the central\
    \ focus of the Shahi Snan during the Mahakumbh Mela. \U0001F549️\n \n The Akharas\
    \ lead this ritual bath, with their Mahamandaleshwar taking the first dip in the\
    \ sacred waters of the Sangam.\n \n The Akharas enter the bathing ghats in a grand\
    \ procession, which includes chariots, elephants, horses, bands, and chanting\
    \ saints and their followers."
  - "When does Peshwai take place?\n The Peshwai of the Akharas is the first major\
    \ attraction of the Mahakumbh. When the Akharas enter the Kumbh city with full\
    \ grandeur, this is called the Peshwai. The Peshwai of each Akhara is conducted\
    \ with proper rituals before the fair officially begins. \n  List of Aliases:\
    \ [['Peshwai', 'entry of Akharas with full grandeur', 'event', 'first major attraction\
    \ of the Mahakumbh'], ['Akhada Darshan', 'Akharas'], , ['Akhand', 'Akhara', 'Kalpwasi\
    \ Camp', 'Naga', 'Nagas', 'Sadhu', 'sadhus']]"
  - Yes, towing services are available if your vehicle breaks down in the parking
    lot.
- source_sentence: How long does it typically take to enter or exit the parking area
    during peak times?
  sentences:
  - In a remote village, the annual kite festival attracts many visitors who come
    to see the vibrant displays. The event showcases dozens of kites soaring high,
    each crafted with unique designs. Local artisans prepare for months, selecting
    colors and materials to make the best creations. Everyone enjoys the lively atmosphere
    filled with music and laughter.
  - 'What is the history and significance of the University of Allahabad?

    Established in 1887, University of Allahabad is a prestigious educational institution.
    It has a grand campus with prominent architectural structures:

    The Science Faculty, formerly known as Muir Central College, is a notable building
    showcasing Indo-Saracenic architecture. The structure includes a central 200 ft.
    tower, and the interiors are adorned with marble and mosaic from Mirzapur.

    The Arts Faculty and other buildings, constructed between 1910 and 1915, are renowned
    for their architectural significance. It’s also historically significant as Rudyard
    Kipling stayed here during 1888-89.'
  - The time to enter or exit the parking area during peak times can vary based on
    crowd density, time of day, and traffic management. Generally, it takes about
    2 to 10 minutes.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@5
- cosine_ndcg@10
- cosine_ndcg@100
- cosine_mrr@5
- cosine_mrr@10
- cosine_mrr@100
- cosine_map@100
model-index:
- name: SentenceTransformer based on BAAI/bge-small-en-v1.5
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: val evaluator
      type: val_evaluator
    metrics:
    - type: cosine_accuracy@1
      value: 0.3443557582668187
      name: Cosine Accuracy@1
    - type: cosine_accuracy@5
      value: 0.7229190421892816
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8038768529076397
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.3443557582668187
      name: Cosine Precision@1
    - type: cosine_precision@5
      value: 0.14458380843785631
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08038768529076395
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.3443557582668187
      name: Cosine Recall@1
    - type: cosine_recall@5
      value: 0.7229190421892816
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8038768529076397
      name: Cosine Recall@10
    - type: cosine_ndcg@5
      value: 0.5504290811876199
      name: Cosine Ndcg@5
    - type: cosine_ndcg@10
      value: 0.5765613499697346
      name: Cosine Ndcg@10
    - type: cosine_ndcg@100
      value: 0.614171229811746
      name: Cosine Ndcg@100
    - type: cosine_mrr@5
      value: 0.4926263778031162
      name: Cosine Mrr@5
    - type: cosine_mrr@10
      value: 0.5033795768402376
      name: Cosine Mrr@10
    - type: cosine_mrr@100
      value: 0.5113051664568566
      name: Cosine Mrr@100
    - type: cosine_map@100
      value: 0.5113051664568576
      name: Cosine Map@100
---

# SentenceTransformer based on BAAI/bge-small-en-v1.5

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("himanshu23099/bge_embedding_finetune_v3")
# Run inference
sentences = [
    'How long does it typically take to enter or exit the parking area during peak times?',
    'The time to enter or exit the parking area during peak times can vary based on crowd density, time of day, and traffic management. Generally, it takes about 2 to 10 minutes.',
    'In a remote village, the annual kite festival attracts many visitors who come to see the vibrant displays. The event showcases dozens of kites soaring high, each crafted with unique designs. Local artisans prepare for months, selecting colors and materials to make the best creations. Everyone enjoys the lively atmosphere filled with music and laughter.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Dataset: `val_evaluator`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.3444     |
| cosine_accuracy@5   | 0.7229     |
| cosine_accuracy@10  | 0.8039     |
| cosine_precision@1  | 0.3444     |
| cosine_precision@5  | 0.1446     |
| cosine_precision@10 | 0.0804     |
| cosine_recall@1     | 0.3444     |
| cosine_recall@5     | 0.7229     |
| cosine_recall@10    | 0.8039     |
| cosine_ndcg@5       | 0.5504     |
| cosine_ndcg@10      | 0.5766     |
| **cosine_ndcg@100** | **0.6142** |
| cosine_mrr@5        | 0.4926     |
| cosine_mrr@10       | 0.5034     |
| cosine_mrr@100      | 0.5113     |
| cosine_map@100      | 0.5113     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 3,507 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                            | negative                                                                             |
  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                              | string                                                                               |
  | details | <ul><li>min: 5 tokens</li><li>mean: 12.02 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 117.69 tokens</li><li>max: 504 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 119.62 tokens</li><li>max: 422 tokens</li></ul> |
* Samples:
  | anchor                                                             | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | negative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
  |:-------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Tour departs how city</code>                                 | <code>What is the itinerary for 1-day Maihar tour?<br> Maihar tour departs from Hotel Ilawart, Prayagraj at 7:00 AM and includes visit to Maa Sharda Devi Temple located atop Trikoota Hill. For more details and booking, click here: https://bit.ly/3YBcbI6 <br>  List of Aliases: [['Allahabad', 'PYG', 'Prayagraj']]</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <code>What one-day outstation tours are available from Prayagraj?<br>The one-day outstation tours from Prayagraj include destinations such as Ayodhya, Varanasi, Maihar, and Chitrakoot. These tours offer a quick yet enriching journey to some of the most significant spiritual and cultural sites near Prayagraj.<br><br>For more details, visit : https://bit.ly/4eWFRoH</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
  | <code>How train for Prayag reach</code>                            | <code>Which airlines operate flights to Prayagraj?<br> Several airlines operate flights to Prayagraj, India. However, availability may depend on your location and the time of travel. Some of the airlines that typically operate flights to Prayagraj include:<br> <br> 1. Air India<br> 2. IndiGo<br> 3. SpiceJet<br> <br> For the most accurate and up-to-date information on train timings to Prayagraj, please visit the IRCTC website <https://www.irctc.co.in/nget/> <br>  List of Aliases: [['Allahabad', 'PYG', 'Prayagraj']]</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <code>What is the best train route to Prayagraj from Ayodhya?<br>To travel by train from Ayodhya to Prayagraj, you can use the Indian Railways' services. Here is a general guide for the route:<br><br>1. Ayodhya Cantt (AY) to Prayagraj Junction (PRYJ) via Train No. 14203: This is one of the direct trains to Prayagraj from Ayodhya. It generally runs on Tuesday and Friday.<br><br>2. Ayodhya Cantt (AY) to Prayagraj Rambag (PRRB) via Train No. 14205: This train runs regularly and is another direct route to Prayagraj.<br><br>For the most accurate and up-to-date information on train timings to Prayagraj, please visit the IRCTC website <https://www.irctc.co.in/nget/></code>                                                                                                                                                                                                                                                                                                                                                       |
  | <code>Why should one do the Prayagraj Panchkoshi Parikrama?</code> | <code>The Prayagraj Panchkoshi Parikrama is a deeply revered spiritual journey that offers multiple benefits to devotees. It is believed to grant blessings equivalent to visiting all sacred pilgrimage sites in India, providing divine grace and spiritual merit. The Parikrama route covers significant temples like the Dwadash Madhav temples, Akshayavat, and Mankameshwar, which are steeped in Hindu mythology and history, allowing pilgrims to connect with the spiritual and cultural heritage of Prayagraj. This circumambulation around sacred sites is also seen as a way to cleanse one's sins and progress towards Moksha (liberation from the cycle of birth and rebirth), making it a path of introspection and spiritual growth. The pilgrimage fosters unity among people from diverse backgrounds, offering a unique cultural exchange and shared spiritual experience. By participating, devotees also help revive an ancient tradition integral to the Kumbh Mela for centuries, reconnecting with age-old practices t...</code> | <code>Elevators are remarkable inventions that revolutionized how we navigate tall buildings. They provide a swift, efficient means of transportation between floors, making urban life more accessible. These mechanical wonders operate on a system of pulleys and counterweights, enabling them to carry heavy loads effortlessly. Safety features like emergency brakes and backup power systems ensure that passengers remain secure during their journey. Various designs and styles can be seen in buildings around the world, from sleek modern glass models to vintage models that evoke nostalgia. Elevators also highlight the advancement of engineering and technology over time, evolving from rudimentary designs to sophisticated machines with smart technology. They are essential in various settings, including residential, commercial, and industrial spaces, offering convenience and practicality. Their presence also allows for the efficient use of vertical space, fostering creativity in architectural designs a...</code> |
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.01}
  ```

### Evaluation Dataset

#### Unnamed Dataset


* Size: 877 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 877 samples:
  |         | anchor                                                                            | positive                                                                            | negative                                                                            |
  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                              | string                                                                              |
  | details | <ul><li>min: 4 tokens</li><li>mean: 12.13 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 117.82 tokens</li><li>max: 504 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 117.68 tokens</li><li>max: 422 tokens</li></ul> |
* Samples:
  | anchor                                                                                                 | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | negative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
  |:-------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Akhara means what</code>                                                                         | <code>Is the word Akhara related to Akhand?<br> Many scholars believe that the word 'Akhara' originated from the word 'Akhand.' Initially, a group of armed ascetics was referred to as 'Akhand.' Over time, when these 'Akhand' groups evolved into centers for training in weaponry and martial arts, they came to be known as 'Akhara.' <br>  List of Aliases: [['Akhand', 'Akhara', 'Kalpwasi Camp', 'Naga', 'Nagas', 'Sadhu', 'sadhus']]</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <code>Why did Adi Shankaracharya organize the Akharas?<br>According to the evidence available in the Akharas and the descriptions mentioned in their history, centuries ago, Adi Shankaracharya established these Akharas with the purpose of protecting Hindu temples and monasteries from foreign and non-believer invaders, as well as safeguarding the followers of Hinduism.<br> <br> Adi Shankaracharya believed that young saints should not only be proficient in scriptures (Shastra) but also in the art of weaponry (Shastra), so they could fulfill the duty of protecting the monasteries, temples, and their followers when necessary.</code>                                                                                                                                                                                                                                                                                                                                                                                                          |
  | <code>Why do so many people gather for this?</code>                                                    | <code>Millions gather for the Kumbh Mela due to its profound spiritual, cultural, and social significance. Rooted in ancient Hindu mythology, the Mela is believed to be an auspicious time when bathing in the sacred rivers—Ganga, Yamuna, and Saraswati—can cleanse sins and lead to spiritual liberation (Moksha). The event, occurring during rare celestial alignments, amplifies these spiritual benefits. It is a unique confluence of faith, where people from diverse backgrounds come together, creating a “mini-India” that fosters unity in diversity.  \n The Mela also offers opportunities for spiritual learning through discourses by saints, religious rituals like Kalpvas, Deep Daan, and cultural performances. Moreover, the Kumbh Mela is a rare platform for connecting with spiritual leaders, experiencing religious tolerance, and participating in one of the world's largest peaceful gatherings, making it a must-attend event for millions seeking spiritual growth, community, and divine blessings.</code> | <code>In the bustling world of urban development, architects and city planners often seek innovative solutions to optimize living spaces. The integration of green spaces within urban environments not only enhances aesthetic appeal but also significantly improves residents' quality of life. Vertical gardens, rooftops, and community parks play a crucial role in providing habitats for local wildlife while promoting biodiversity in densely populated areas. <br><br>Furthermore, advancements in sustainable technology, such as solar panels and rainwater harvesting systems, are being incorporated into these designs, offering environmentally friendly alternatives that reduce utility costs for residents. Public art installations also contribute to community identity, fostering a sense of belonging among citizens. <br><br>Collaborative efforts between various stakeholders—governments, private sectors, and local communities—are essential to ensure these projects reflect the needs and desires of the people. The succ...</code> |
  | <code>Do parking charges vary between different parking zones or proximity to the Mela grounds?</code> | <code>No, the parking charges are standardized and remain the same throughout, regardless of the parking zone or proximity to the Mela grounds. Charges are fixed at ₹5 for cycles, ₹15 for two-wheelers, ₹65 for 3-4 wheelers, and ₹260 for buses and heavy vehicles for 24 hours.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <code>The ancient art of pottery involves molding clay into various shapes before firing it in a kiln. Traditionally, artisans use hand tools and techniques passed down through generations. Each region often has its own distinctive styles, resulting in a rich diversity of forms, glazes, and colors. Pottery can serve practical purposes, such as in cooking and storage, while also being a medium for artistic expression and cultural storytelling.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.01}
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `gradient_accumulation_steps`: 2
- `learning_rate`: 1e-05
- `weight_decay`: 0.01
- `num_train_epochs`: 30
- `warmup_ratio`: 0.1
- `load_best_model_at_end`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 2
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 1e-05
- `weight_decay`: 0.01
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 30
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
<details><summary>Click to expand</summary>

| Epoch   | Step | Training Loss | Validation Loss | val_evaluator_cosine_ndcg@100 |
|:-------:|:----:|:-------------:|:---------------:|:-----------------------------:|
| 0.0909  | 10   | 1.9717        | 1.2192          | 0.4285                        |
| 0.1818  | 20   | 1.8228        | 1.1896          | 0.4307                        |
| 0.2727  | 30   | 1.9999        | 1.1429          | 0.4310                        |
| 0.3636  | 40   | 1.6463        | 1.0845          | 0.4311                        |
| 0.4545  | 50   | 1.9207        | 1.0205          | 0.4334                        |
| 0.5455  | 60   | 1.5777        | 0.9509          | 0.4338                        |
| 0.6364  | 70   | 1.4277        | 0.8810          | 0.4376                        |
| 0.7273  | 80   | 1.408         | 0.8130          | 0.4432                        |
| 0.8182  | 90   | 1.3565        | 0.7535          | 0.4436                        |
| 0.9091  | 100  | 1.3322        | 0.6935          | 0.4495                        |
| 1.0     | 110  | 0.8344        | 0.6420          | 0.4518                        |
| 1.0909  | 120  | 1.1696        | 0.5956          | 0.4515                        |
| 1.1818  | 130  | 0.9622        | 0.5524          | 0.4565                        |
| 1.2727  | 140  | 0.9005        | 0.5173          | 0.4616                        |
| 1.3636  | 150  | 0.962         | 0.4802          | 0.4662                        |
| 1.4545  | 160  | 0.7924        | 0.4497          | 0.4693                        |
| 1.5455  | 170  | 0.8955        | 0.4262          | 0.4711                        |
| 1.6364  | 180  | 0.7652        | 0.4031          | 0.4736                        |
| 1.7273  | 190  | 0.7517        | 0.3804          | 0.4773                        |
| 1.8182  | 200  | 0.5669        | 0.3636          | 0.4784                        |
| 1.9091  | 210  | 0.6641        | 0.3469          | 0.4813                        |
| 2.0     | 220  | 0.5227        | 0.3267          | 0.4820                        |
| 2.0909  | 230  | 0.6146        | 0.3075          | 0.4843                        |
| 2.1818  | 240  | 0.4709        | 0.2908          | 0.4882                        |
| 2.2727  | 250  | 0.5963        | 0.2780          | 0.4955                        |
| 2.3636  | 260  | 0.5103        | 0.2668          | 0.4977                        |
| 2.4545  | 270  | 0.4833        | 0.2566          | 0.5027                        |
| 2.5455  | 280  | 0.4389        | 0.2431          | 0.5045                        |
| 2.6364  | 290  | 0.4653        | 0.2317          | 0.5059                        |
| 2.7273  | 300  | 0.3559        | 0.2263          | 0.5086                        |
| 2.8182  | 310  | 0.4623        | 0.2197          | 0.5127                        |
| 2.9091  | 320  | 0.3889        | 0.2103          | 0.5183                        |
| 3.0     | 330  | 0.4014        | 0.2037          | 0.5206                        |
| 3.0909  | 340  | 0.2977        | 0.1999          | 0.5228                        |
| 3.1818  | 350  | 0.4656        | 0.1956          | 0.5266                        |
| 3.2727  | 360  | 0.436         | 0.1873          | 0.5288                        |
| 3.3636  | 370  | 0.3111        | 0.1803          | 0.5311                        |
| 3.4545  | 380  | 0.333         | 0.1759          | 0.5325                        |
| 3.5455  | 390  | 0.2899        | 0.1717          | 0.5381                        |
| 3.6364  | 400  | 0.4245        | 0.1663          | 0.5419                        |
| 3.7273  | 410  | 0.4247        | 0.1658          | 0.5421                        |
| 3.8182  | 420  | 0.2251        | 0.1646          | 0.5442                        |
| 3.9091  | 430  | 0.2784        | 0.1635          | 0.5448                        |
| 4.0     | 440  | 0.2503        | 0.1613          | 0.5490                        |
| 4.0909  | 450  | 0.2342        | 0.1588          | 0.5501                        |
| 4.1818  | 460  | 0.3139        | 0.1584          | 0.5527                        |
| 4.2727  | 470  | 0.2356        | 0.1552          | 0.5498                        |
| 4.3636  | 480  | 0.3147        | 0.1496          | 0.5518                        |
| 4.4545  | 490  | 0.2691        | 0.1469          | 0.5508                        |
| 4.5455  | 500  | 0.2639        | 0.1466          | 0.5561                        |
| 4.6364  | 510  | 0.1581        | 0.1432          | 0.5625                        |
| 4.7273  | 520  | 0.1922        | 0.1406          | 0.5663                        |
| 4.8182  | 530  | 0.2453        | 0.1406          | 0.5688                        |
| 4.9091  | 540  | 0.2631        | 0.1399          | 0.5705                        |
| 5.0     | 550  | 0.3324        | 0.1402          | 0.5681                        |
| 5.0909  | 560  | 0.1801        | 0.1389          | 0.5715                        |
| 5.1818  | 570  | 0.2096        | 0.1371          | 0.5736                        |
| 5.2727  | 580  | 0.2167        | 0.1344          | 0.5743                        |
| 5.3636  | 590  | 0.1553        | 0.1297          | 0.5791                        |
| 5.4545  | 600  | 0.1903        | 0.1263          | 0.5790                        |
| 5.5455  | 610  | 0.1388        | 0.1241          | 0.5816                        |
| 5.6364  | 620  | 0.2642        | 0.1231          | 0.5809                        |
| 5.7273  | 630  | 0.2119        | 0.1238          | 0.5792                        |
| 5.8182  | 640  | 0.1767        | 0.1216          | 0.5809                        |
| 5.9091  | 650  | 0.2167        | 0.1218          | 0.5810                        |
| 6.0     | 660  | 0.26          | 0.1232          | 0.5793                        |
| 6.0909  | 670  | 0.1603        | 0.1222          | 0.5807                        |
| 6.1818  | 680  | 0.1534        | 0.1209          | 0.5794                        |
| 6.2727  | 690  | 0.1742        | 0.1165          | 0.5821                        |
| 6.3636  | 700  | 0.1133        | 0.1120          | 0.5824                        |
| 6.4545  | 710  | 0.1198        | 0.1106          | 0.5817                        |
| 6.5455  | 720  | 0.2019        | 0.1114          | 0.5832                        |
| 6.6364  | 730  | 0.2268        | 0.1116          | 0.5823                        |
| 6.7273  | 740  | 0.1779        | 0.1077          | 0.5887                        |
| 6.8182  | 750  | 0.1586        | 0.1048          | 0.5892                        |
| 6.9091  | 760  | 0.2074        | 0.1057          | 0.5872                        |
| 7.0     | 770  | 0.1625        | 0.1091          | 0.5881                        |
| 7.0909  | 780  | 0.2266        | 0.1079          | 0.5900                        |
| 7.1818  | 790  | 0.148         | 0.1054          | 0.5895                        |
| 7.2727  | 800  | 0.1248        | 0.1048          | 0.5916                        |
| 7.3636  | 810  | 0.1753        | 0.1047          | 0.5956                        |
| 7.4545  | 820  | 0.109         | 0.1045          | 0.5981                        |
| 7.5455  | 830  | 0.1369        | 0.1056          | 0.5953                        |
| 7.6364  | 840  | 0.1209        | 0.1068          | 0.5946                        |
| 7.7273  | 850  | 0.182         | 0.1079          | 0.5952                        |
| 7.8182  | 860  | 0.1116        | 0.1083          | 0.5978                        |
| 7.9091  | 870  | 0.1813        | 0.1033          | 0.5985                        |
| 8.0     | 880  | 0.1559        | 0.1010          | 0.6027                        |
| 8.0909  | 890  | 0.1384        | 0.1019          | 0.6017                        |
| 8.1818  | 900  | 0.1057        | 0.1034          | 0.6004                        |
| 8.2727  | 910  | 0.1359        | 0.1033          | 0.5994                        |
| 8.3636  | 920  | 0.0909        | 0.1008          | 0.6011                        |
| 8.4545  | 930  | 0.0995        | 0.0986          | 0.6030                        |
| 8.5455  | 940  | 0.1261        | 0.0973          | 0.6046                        |
| 8.6364  | 950  | 0.1031        | 0.0955          | 0.6013                        |
| 8.7273  | 960  | 0.1163        | 0.0949          | 0.6018                        |
| 8.8182  | 970  | 0.1493        | 0.0963          | 0.6041                        |
| 8.9091  | 980  | 0.13          | 0.0967          | 0.6044                        |
| 9.0     | 990  | 0.1059        | 0.0937          | 0.6044                        |
| 9.0909  | 1000 | 0.1287        | 0.0923          | 0.6045                        |
| 9.1818  | 1010 | 0.1019        | 0.0924          | 0.6086                        |
| 9.2727  | 1020 | 0.1645        | 0.0921          | 0.6086                        |
| 9.3636  | 1030 | 0.1395        | 0.0931          | 0.6075                        |
| 9.4545  | 1040 | 0.1067        | 0.0935          | 0.6051                        |
| 9.5455  | 1050 | 0.1334        | 0.0930          | 0.6058                        |
| 9.6364  | 1060 | 0.136         | 0.0919          | 0.6069                        |
| 9.7273  | 1070 | 0.0968        | 0.0930          | 0.6052                        |
| 9.8182  | 1080 | 0.1447        | 0.0946          | 0.6077                        |
| 9.9091  | 1090 | 0.1288        | 0.0967          | 0.6049                        |
| 10.0    | 1100 | 0.1001        | 0.0960          | 0.6034                        |
| 10.0909 | 1110 | 0.1642        | 0.0952          | 0.6000                        |
| 10.1818 | 1120 | 0.1737        | 0.0926          | 0.6028                        |
| 10.2727 | 1130 | 0.1283        | 0.0906          | 0.6023                        |
| 10.3636 | 1140 | 0.0959        | 0.0906          | 0.6073                        |
| 10.4545 | 1150 | 0.0875        | 0.0927          | 0.6065                        |
| 10.5455 | 1160 | 0.1284        | 0.0934          | 0.6058                        |
| 10.6364 | 1170 | 0.1482        | 0.0937          | 0.6049                        |
| 10.7273 | 1180 | 0.1089        | 0.0925          | 0.6018                        |
| 10.8182 | 1190 | 0.0876        | 0.0896          | 0.6068                        |
| 10.9091 | 1200 | 0.0849        | 0.0897          | 0.6062                        |
| 11.0    | 1210 | 0.1041        | 0.0897          | 0.6073                        |
| 11.0909 | 1220 | 0.107         | 0.0889          | 0.6043                        |
| 11.1818 | 1230 | 0.1018        | 0.0868          | 0.6059                        |
| 11.2727 | 1240 | 0.0835        | 0.0846          | 0.6106                        |
| 11.3636 | 1250 | 0.1455        | 0.0831          | 0.6069                        |
| 11.4545 | 1260 | 0.1071        | 0.0832          | 0.6051                        |
| 11.5455 | 1270 | 0.0777        | 0.0839          | 0.6054                        |
| 11.6364 | 1280 | 0.1218        | 0.0855          | 0.6051                        |
| 11.7273 | 1290 | 0.0702        | 0.0862          | 0.6048                        |
| 11.8182 | 1300 | 0.1017        | 0.0865          | 0.6068                        |
| 11.9091 | 1310 | 0.1452        | 0.0860          | 0.6074                        |
| 12.0    | 1320 | 0.1563        | 0.0855          | 0.6073                        |
| 12.0909 | 1330 | 0.1026        | 0.0858          | 0.6102                        |
| 12.1818 | 1340 | 0.108         | 0.0861          | 0.6062                        |
| 12.2727 | 1350 | 0.078         | 0.0854          | 0.6055                        |
| 12.3636 | 1360 | 0.0655        | 0.0847          | 0.6082                        |
| 12.4545 | 1370 | 0.1075        | 0.0836          | 0.6085                        |
| 12.5455 | 1380 | 0.0875        | 0.0846          | 0.6049                        |
| 12.6364 | 1390 | 0.1082        | 0.0828          | 0.6096                        |
| 12.7273 | 1400 | 0.1133        | 0.0816          | 0.6077                        |
| 12.8182 | 1410 | 0.0931        | 0.0814          | 0.6106                        |
| 12.9091 | 1420 | 0.0728        | 0.0818          | 0.6085                        |
| 13.0    | 1430 | 0.1338        | 0.0827          | 0.6082                        |
| 13.0909 | 1440 | 0.1232        | 0.0813          | 0.6076                        |
| 13.1818 | 1450 | 0.093         | 0.0796          | 0.6110                        |
| 13.2727 | 1460 | 0.0994        | 0.0793          | 0.6090                        |
| 13.3636 | 1470 | 0.0424        | 0.0806          | 0.6109                        |
| 13.4545 | 1480 | 0.0598        | 0.0833          | 0.6086                        |
| 13.5455 | 1490 | 0.0813        | 0.0841          | 0.6093                        |
| 13.6364 | 1500 | 0.0913        | 0.0817          | 0.6125                        |
| 13.7273 | 1510 | 0.1048        | 0.0801          | 0.6133                        |
| 13.8182 | 1520 | 0.0503        | 0.0800          | 0.6110                        |
| 13.9091 | 1530 | 0.0954        | 0.0800          | 0.6111                        |
| 14.0    | 1540 | 0.067         | 0.0791          | 0.6099                        |
| 14.0909 | 1550 | 0.0808        | 0.0779          | 0.6111                        |
| 14.1818 | 1560 | 0.1047        | 0.0783          | 0.6110                        |
| 14.2727 | 1570 | 0.0685        | 0.0791          | 0.6125                        |
| 14.3636 | 1580 | 0.1215        | 0.0793          | 0.6120                        |
| 14.4545 | 1590 | 0.0761        | 0.0794          | 0.6157                        |
| 14.5455 | 1600 | 0.0705        | 0.0790          | 0.6136                        |
| 14.6364 | 1610 | 0.0722        | 0.0785          | 0.6098                        |
| 14.7273 | 1620 | 0.0881        | 0.0785          | 0.6120                        |
| 14.8182 | 1630 | 0.0668        | 0.0791          | 0.6122                        |
| 14.9091 | 1640 | 0.1261        | 0.0787          | 0.6152                        |
| 15.0    | 1650 | 0.0601        | 0.0784          | 0.6148                        |
| 15.0909 | 1660 | 0.0701        | 0.0799          | 0.6167                        |
| 15.1818 | 1670 | 0.1244        | 0.0794          | 0.6160                        |
| 15.2727 | 1680 | 0.0531        | 0.0788          | 0.6174                        |
| 15.3636 | 1690 | 0.0518        | 0.0780          | 0.6154                        |
| 15.4545 | 1700 | 0.0961        | 0.0784          | 0.6142                        |
| 15.5455 | 1710 | 0.1041        | -               | -                             |

</details>

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.0
- Transformers: 4.46.2
- PyTorch: 2.5.1+cu121
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### GISTEmbedLoss
```bibtex
@misc{solatorio2024gistembed,
    title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
    author={Aivin V. Solatorio},
    year={2024},
    eprint={2402.16829},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->