results

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9268
  • Accuracy: {'accuracy': 0.897}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 200 0.3711 {'accuracy': 0.888}
No log 2.0 400 0.3744 {'accuracy': 0.891}
0.3758 3.0 600 0.5101 {'accuracy': 0.885}
0.3758 4.0 800 0.5947 {'accuracy': 0.885}
0.1658 5.0 1000 0.6976 {'accuracy': 0.88}
0.1658 6.0 1200 0.7152 {'accuracy': 0.891}
0.1658 7.0 1400 0.8370 {'accuracy': 0.893}
0.0294 8.0 1600 0.9208 {'accuracy': 0.889}
0.0294 9.0 1800 0.9238 {'accuracy': 0.893}
0.0087 10.0 2000 0.9268 {'accuracy': 0.897}

Framework versions

  • PEFT 0.14.0
  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Tokenizers 0.21.0
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for himanshud2611/results

Adapter
(225)
this model