results
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.9268
- Accuracy: {'accuracy': 0.897}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 200 | 0.3711 | {'accuracy': 0.888} |
No log | 2.0 | 400 | 0.3744 | {'accuracy': 0.891} |
0.3758 | 3.0 | 600 | 0.5101 | {'accuracy': 0.885} |
0.3758 | 4.0 | 800 | 0.5947 | {'accuracy': 0.885} |
0.1658 | 5.0 | 1000 | 0.6976 | {'accuracy': 0.88} |
0.1658 | 6.0 | 1200 | 0.7152 | {'accuracy': 0.891} |
0.1658 | 7.0 | 1400 | 0.8370 | {'accuracy': 0.893} |
0.0294 | 8.0 | 1600 | 0.9208 | {'accuracy': 0.889} |
0.0294 | 9.0 | 1800 | 0.9238 | {'accuracy': 0.893} |
0.0087 | 10.0 | 2000 | 0.9268 | {'accuracy': 0.897} |
Framework versions
- PEFT 0.14.0
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Tokenizers 0.21.0
- Downloads last month
- 2
Model tree for himanshud2611/results
Base model
distilbert/distilbert-base-uncased