File size: 2,136 Bytes
d97fe81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
library_name: peft
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: results
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# results

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9268
- Accuracy: {'accuracy': 0.897}

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy            |
|:-------------:|:-----:|:----:|:---------------:|:-------------------:|
| No log        | 1.0   | 200  | 0.3711          | {'accuracy': 0.888} |
| No log        | 2.0   | 400  | 0.3744          | {'accuracy': 0.891} |
| 0.3758        | 3.0   | 600  | 0.5101          | {'accuracy': 0.885} |
| 0.3758        | 4.0   | 800  | 0.5947          | {'accuracy': 0.885} |
| 0.1658        | 5.0   | 1000 | 0.6976          | {'accuracy': 0.88}  |
| 0.1658        | 6.0   | 1200 | 0.7152          | {'accuracy': 0.891} |
| 0.1658        | 7.0   | 1400 | 0.8370          | {'accuracy': 0.893} |
| 0.0294        | 8.0   | 1600 | 0.9208          | {'accuracy': 0.889} |
| 0.0294        | 9.0   | 1800 | 0.9238          | {'accuracy': 0.893} |
| 0.0087        | 10.0  | 2000 | 0.9268          | {'accuracy': 0.897} |


### Framework versions

- PEFT 0.14.0
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Tokenizers 0.21.0