metadata
tags:
- spacy
- token-classification
language:
- ja
license: CC-BY-SA-4.0
model-index:
- name: ja_gsd_bert_wwm_unidic_lite
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.8496143959
- name: NER Recall
type: recall
value: 0.8314465409
- name: NER F Score
type: f_score
value: 0.840432295
- task:
name: POS
type: token-classification
metrics:
- name: POS Accuracy
type: accuracy
value: 0
- task:
name: SENTER
type: token-classification
metrics:
- name: SENTER Precision
type: precision
value: 0.9201520913
- name: SENTER Recall
type: recall
value: 0.9546351085
- name: SENTER F Score
type: f_score
value: 0.9370764763
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Dependencies Accuracy
type: accuracy
value: 0.9367795389
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Dependencies Accuracy
type: accuracy
value: 0.9367795389
Japanese transformer pipeline (bert-base). Components: transformer, parser, ner.
Feature | Description |
---|---|
Name | ja_gsd_bert_wwm_unidic_lite |
Version | 3.1.1 |
spaCy | >=3.1.0,<3.2.0 |
Default Pipeline | transformer , parser , ner |
Components | transformer , parser , ner |
Vectors | 0 keys, 0 unique vectors (0 dimensions) |
Sources | UD_Japanese-GSD UD_Japanese-GSD r2.8+NE SudachiDict_core cl-tohoku/bert-base-japanese-whole-word-masking unidic_lite |
License | CC BY-SA 4.0 |
Author | Megagon Labs Tokyo. |
Label Scheme
View label scheme (45 labels for 2 components)
Component | Labels |
---|---|
parser |
ROOT , acl , advcl , advmod , amod , aux , case , cc , ccomp , compound , cop , csubj , dep , det , dislocated , fixed , mark , nmod , nsubj , nummod , obj , obl , punct |
ner |
CARDINAL , DATE , EVENT , FAC , GPE , LANGUAGE , LAW , LOC , MONEY , MOVEMENT , NORP , ORDINAL , ORG , PERCENT , PERSON , PET_NAME , PHONE , PRODUCT , QUANTITY , TIME , TITLE_AFFIX , WORK_OF_ART |
Accuracy
Type | Score |
---|---|
DEP_UAS |
93.68 |
DEP_LAS |
92.61 |
SENTS_P |
92.02 |
SENTS_R |
95.46 |
SENTS_F |
93.71 |
ENTS_F |
84.04 |
ENTS_P |
84.96 |
ENTS_R |
83.14 |
TAG_ACC |
0.00 |
TRANSFORMER_LOSS |
28861.67 |
PARSER_LOSS |
1306248.63 |
NER_LOSS |
13993.36 |