SKNahin commited on
Commit
4dc51c5
1 Parent(s): 5b0f784

Training in progress, step 3906

Browse files
model-00001-of-00002.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:cd00e371d9821006b325604b99c425189b66d6bb91fe54dc00ded7e0898185f5
3
  size 4988025760
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad22f023ecf36dfced72ad80378beba12a36cd4d6ec5abd198640c964dc03445
3
  size 4988025760
model-00002-of-00002.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fd3f3625f72c43e50829d156042402257e4e1aeb755219fe95ef31c01c5c20c8
3
  size 240691728
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3f7b3f3b53cc8755a501863913097b38797e57de3bbcdc8497c15b609e6a5d6
3
  size 240691728
trainer_log.jsonl CHANGED
@@ -3612,3 +3612,296 @@
3612
  {"current_steps": 3612, "total_steps": 3906, "loss": 1.3346, "learning_rate": 5.680727962102417e-07, "epoch": 0.924672, "percentage": 92.47, "elapsed_time": "13:16:39", "remaining_time": "1:04:50"}
3613
  {"current_steps": 3613, "total_steps": 3906, "loss": 1.3187, "learning_rate": 5.642331706122983e-07, "epoch": 0.924928, "percentage": 92.5, "elapsed_time": "13:16:52", "remaining_time": "1:04:37"}
3614
  {"current_steps": 3614, "total_steps": 3906, "loss": 1.3196, "learning_rate": 5.604063794773562e-07, "epoch": 0.925184, "percentage": 92.52, "elapsed_time": "13:17:06", "remaining_time": "1:04:24"}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3612
  {"current_steps": 3612, "total_steps": 3906, "loss": 1.3346, "learning_rate": 5.680727962102417e-07, "epoch": 0.924672, "percentage": 92.47, "elapsed_time": "13:16:39", "remaining_time": "1:04:50"}
3613
  {"current_steps": 3613, "total_steps": 3906, "loss": 1.3187, "learning_rate": 5.642331706122983e-07, "epoch": 0.924928, "percentage": 92.5, "elapsed_time": "13:16:52", "remaining_time": "1:04:37"}
3614
  {"current_steps": 3614, "total_steps": 3906, "loss": 1.3196, "learning_rate": 5.604063794773562e-07, "epoch": 0.925184, "percentage": 92.52, "elapsed_time": "13:17:06", "remaining_time": "1:04:24"}
3615
+ {"current_steps": 3615, "total_steps": 3906, "loss": 1.3253, "learning_rate": 5.56592425332445e-07, "epoch": 0.92544, "percentage": 92.55, "elapsed_time": "13:17:19", "remaining_time": "1:04:10"}
3616
+ {"current_steps": 3616, "total_steps": 3906, "loss": 1.3195, "learning_rate": 5.527913106961214e-07, "epoch": 0.925696, "percentage": 92.58, "elapsed_time": "13:17:32", "remaining_time": "1:03:57"}
3617
+ {"current_steps": 3617, "total_steps": 3906, "loss": 1.3123, "learning_rate": 5.490030380784661e-07, "epoch": 0.925952, "percentage": 92.6, "elapsed_time": "13:17:45", "remaining_time": "1:03:44"}
3618
+ {"current_steps": 3618, "total_steps": 3906, "loss": 1.2768, "learning_rate": 5.452276099810672e-07, "epoch": 0.926208, "percentage": 92.63, "elapsed_time": "13:17:58", "remaining_time": "1:03:31"}
3619
+ {"current_steps": 3619, "total_steps": 3906, "loss": 1.3008, "learning_rate": 5.414650288970436e-07, "epoch": 0.926464, "percentage": 92.65, "elapsed_time": "13:18:12", "remaining_time": "1:03:18"}
3620
+ {"current_steps": 3620, "total_steps": 3906, "loss": 1.3265, "learning_rate": 5.3771529731103e-07, "epoch": 0.92672, "percentage": 92.68, "elapsed_time": "13:18:25", "remaining_time": "1:03:04"}
3621
+ {"current_steps": 3621, "total_steps": 3906, "loss": 1.3465, "learning_rate": 5.339784176991636e-07, "epoch": 0.926976, "percentage": 92.7, "elapsed_time": "13:18:38", "remaining_time": "1:02:51"}
3622
+ {"current_steps": 3622, "total_steps": 3906, "loss": 1.335, "learning_rate": 5.302543925291103e-07, "epoch": 0.927232, "percentage": 92.73, "elapsed_time": "13:18:51", "remaining_time": "1:02:38"}
3623
+ {"current_steps": 3623, "total_steps": 3906, "loss": 1.3197, "learning_rate": 5.265432242600387e-07, "epoch": 0.927488, "percentage": 92.75, "elapsed_time": "13:19:04", "remaining_time": "1:02:25"}
3624
+ {"current_steps": 3624, "total_steps": 3906, "loss": 1.2752, "learning_rate": 5.228449153426263e-07, "epoch": 0.927744, "percentage": 92.78, "elapsed_time": "13:19:18", "remaining_time": "1:02:11"}
3625
+ {"current_steps": 3625, "total_steps": 3906, "loss": 1.3489, "learning_rate": 5.191594682190659e-07, "epoch": 0.928, "percentage": 92.81, "elapsed_time": "13:19:31", "remaining_time": "1:01:58"}
3626
+ {"current_steps": 3626, "total_steps": 3906, "loss": 1.2799, "learning_rate": 5.154868853230488e-07, "epoch": 0.928256, "percentage": 92.83, "elapsed_time": "13:19:44", "remaining_time": "1:01:45"}
3627
+ {"current_steps": 3627, "total_steps": 3906, "loss": 1.3501, "learning_rate": 5.118271690797794e-07, "epoch": 0.928512, "percentage": 92.86, "elapsed_time": "13:19:57", "remaining_time": "1:01:32"}
3628
+ {"current_steps": 3628, "total_steps": 3906, "loss": 1.3074, "learning_rate": 5.0818032190596e-07, "epoch": 0.928768, "percentage": 92.88, "elapsed_time": "13:20:10", "remaining_time": "1:01:18"}
3629
+ {"current_steps": 3629, "total_steps": 3906, "loss": 1.293, "learning_rate": 5.045463462097954e-07, "epoch": 0.929024, "percentage": 92.91, "elapsed_time": "13:20:24", "remaining_time": "1:01:05"}
3630
+ {"current_steps": 3630, "total_steps": 3906, "loss": 1.2885, "learning_rate": 5.009252443909929e-07, "epoch": 0.92928, "percentage": 92.93, "elapsed_time": "13:20:37", "remaining_time": "1:00:52"}
3631
+ {"current_steps": 3631, "total_steps": 3906, "loss": 1.2724, "learning_rate": 4.973170188407573e-07, "epoch": 0.929536, "percentage": 92.96, "elapsed_time": "13:20:50", "remaining_time": "1:00:39"}
3632
+ {"current_steps": 3632, "total_steps": 3906, "loss": 1.3166, "learning_rate": 4.937216719417892e-07, "epoch": 0.929792, "percentage": 92.99, "elapsed_time": "13:21:03", "remaining_time": "1:00:25"}
3633
+ {"current_steps": 3633, "total_steps": 3906, "loss": 1.3251, "learning_rate": 4.901392060682853e-07, "epoch": 0.930048, "percentage": 93.01, "elapsed_time": "13:21:16", "remaining_time": "1:00:12"}
3634
+ {"current_steps": 3634, "total_steps": 3906, "loss": 1.3032, "learning_rate": 4.865696235859374e-07, "epoch": 0.930304, "percentage": 93.04, "elapsed_time": "13:21:30", "remaining_time": "0:59:59"}
3635
+ {"current_steps": 3635, "total_steps": 3906, "loss": 1.2889, "learning_rate": 4.830129268519334e-07, "epoch": 0.93056, "percentage": 93.06, "elapsed_time": "13:21:43", "remaining_time": "0:59:46"}
3636
+ {"current_steps": 3636, "total_steps": 3906, "loss": 1.2901, "learning_rate": 4.794691182149435e-07, "epoch": 0.930816, "percentage": 93.09, "elapsed_time": "13:21:56", "remaining_time": "0:59:32"}
3637
+ {"current_steps": 3637, "total_steps": 3906, "loss": 1.3194, "learning_rate": 4.7593820001513134e-07, "epoch": 0.931072, "percentage": 93.11, "elapsed_time": "13:22:09", "remaining_time": "0:59:19"}
3638
+ {"current_steps": 3638, "total_steps": 3906, "loss": 1.3062, "learning_rate": 4.724201745841495e-07, "epoch": 0.931328, "percentage": 93.14, "elapsed_time": "13:22:22", "remaining_time": "0:59:06"}
3639
+ {"current_steps": 3639, "total_steps": 3906, "loss": 1.2754, "learning_rate": 4.6891504424513733e-07, "epoch": 0.931584, "percentage": 93.16, "elapsed_time": "13:22:35", "remaining_time": "0:58:53"}
3640
+ {"current_steps": 3640, "total_steps": 3906, "loss": 1.3301, "learning_rate": 4.654228113127168e-07, "epoch": 0.93184, "percentage": 93.19, "elapsed_time": "13:22:49", "remaining_time": "0:58:40"}
3641
+ {"current_steps": 3641, "total_steps": 3906, "loss": 1.3311, "learning_rate": 4.619434780929966e-07, "epoch": 0.932096, "percentage": 93.22, "elapsed_time": "13:23:02", "remaining_time": "0:58:26"}
3642
+ {"current_steps": 3642, "total_steps": 3906, "loss": 1.2905, "learning_rate": 4.584770468835564e-07, "epoch": 0.932352, "percentage": 93.24, "elapsed_time": "13:23:15", "remaining_time": "0:58:13"}
3643
+ {"current_steps": 3643, "total_steps": 3906, "loss": 1.3149, "learning_rate": 4.5502351997347206e-07, "epoch": 0.932608, "percentage": 93.27, "elapsed_time": "13:23:28", "remaining_time": "0:58:00"}
3644
+ {"current_steps": 3644, "total_steps": 3906, "loss": 1.3469, "learning_rate": 4.515828996432836e-07, "epoch": 0.932864, "percentage": 93.29, "elapsed_time": "13:23:41", "remaining_time": "0:57:47"}
3645
+ {"current_steps": 3645, "total_steps": 3906, "loss": 1.2926, "learning_rate": 4.481551881650159e-07, "epoch": 0.93312, "percentage": 93.32, "elapsed_time": "13:23:55", "remaining_time": "0:57:33"}
3646
+ {"current_steps": 3646, "total_steps": 3906, "loss": 1.3555, "learning_rate": 4.4474038780216945e-07, "epoch": 0.933376, "percentage": 93.34, "elapsed_time": "13:24:08", "remaining_time": "0:57:20"}
3647
+ {"current_steps": 3647, "total_steps": 3906, "loss": 1.291, "learning_rate": 4.413385008097204e-07, "epoch": 0.933632, "percentage": 93.37, "elapsed_time": "13:24:21", "remaining_time": "0:57:07"}
3648
+ {"current_steps": 3648, "total_steps": 3906, "loss": 1.3675, "learning_rate": 4.379495294341052e-07, "epoch": 0.933888, "percentage": 93.39, "elapsed_time": "13:24:34", "remaining_time": "0:56:54"}
3649
+ {"current_steps": 3649, "total_steps": 3906, "loss": 1.3215, "learning_rate": 4.3457347591324695e-07, "epoch": 0.934144, "percentage": 93.42, "elapsed_time": "13:24:47", "remaining_time": "0:56:40"}
3650
+ {"current_steps": 3650, "total_steps": 3906, "loss": 1.3148, "learning_rate": 4.3121034247653124e-07, "epoch": 0.9344, "percentage": 93.45, "elapsed_time": "13:25:01", "remaining_time": "0:56:27"}
3651
+ {"current_steps": 3651, "total_steps": 3906, "loss": 1.3311, "learning_rate": 4.2786013134481273e-07, "epoch": 0.934656, "percentage": 93.47, "elapsed_time": "13:25:14", "remaining_time": "0:56:14"}
3652
+ {"current_steps": 3652, "total_steps": 3906, "loss": 1.2948, "learning_rate": 4.2452284473041285e-07, "epoch": 0.934912, "percentage": 93.5, "elapsed_time": "13:25:27", "remaining_time": "0:56:01"}
3653
+ {"current_steps": 3653, "total_steps": 3906, "loss": 1.3399, "learning_rate": 4.2119848483711757e-07, "epoch": 0.935168, "percentage": 93.52, "elapsed_time": "13:25:40", "remaining_time": "0:55:47"}
3654
+ {"current_steps": 3654, "total_steps": 3906, "loss": 1.2626, "learning_rate": 4.1788705386017757e-07, "epoch": 0.935424, "percentage": 93.55, "elapsed_time": "13:25:53", "remaining_time": "0:55:34"}
3655
+ {"current_steps": 3655, "total_steps": 3906, "loss": 1.3337, "learning_rate": 4.145885539863037e-07, "epoch": 0.93568, "percentage": 93.57, "elapsed_time": "13:26:07", "remaining_time": "0:55:21"}
3656
+ {"current_steps": 3656, "total_steps": 3906, "loss": 1.3405, "learning_rate": 4.1130298739367134e-07, "epoch": 0.935936, "percentage": 93.6, "elapsed_time": "13:26:20", "remaining_time": "0:55:08"}
3657
+ {"current_steps": 3657, "total_steps": 3906, "loss": 1.3641, "learning_rate": 4.080303562519117e-07, "epoch": 0.936192, "percentage": 93.63, "elapsed_time": "13:26:33", "remaining_time": "0:54:55"}
3658
+ {"current_steps": 3658, "total_steps": 3906, "loss": 1.3414, "learning_rate": 4.047706627221204e-07, "epoch": 0.936448, "percentage": 93.65, "elapsed_time": "13:26:46", "remaining_time": "0:54:41"}
3659
+ {"current_steps": 3659, "total_steps": 3906, "loss": 1.3462, "learning_rate": 4.0152390895684013e-07, "epoch": 0.936704, "percentage": 93.68, "elapsed_time": "13:26:59", "remaining_time": "0:54:28"}
3660
+ {"current_steps": 3660, "total_steps": 3906, "loss": 1.2832, "learning_rate": 3.9829009710007804e-07, "epoch": 0.93696, "percentage": 93.7, "elapsed_time": "13:27:13", "remaining_time": "0:54:15"}
3661
+ {"current_steps": 3661, "total_steps": 3906, "loss": 1.2733, "learning_rate": 3.950692292872882e-07, "epoch": 0.937216, "percentage": 93.73, "elapsed_time": "13:27:26", "remaining_time": "0:54:02"}
3662
+ {"current_steps": 3662, "total_steps": 3906, "loss": 1.2583, "learning_rate": 3.918613076453781e-07, "epoch": 0.937472, "percentage": 93.75, "elapsed_time": "13:27:39", "remaining_time": "0:53:48"}
3663
+ {"current_steps": 3663, "total_steps": 3906, "loss": 1.3481, "learning_rate": 3.886663342927133e-07, "epoch": 0.937728, "percentage": 93.78, "elapsed_time": "13:27:52", "remaining_time": "0:53:35"}
3664
+ {"current_steps": 3664, "total_steps": 3906, "loss": 1.3053, "learning_rate": 3.8548431133909937e-07, "epoch": 0.937984, "percentage": 93.8, "elapsed_time": "13:28:05", "remaining_time": "0:53:22"}
3665
+ {"current_steps": 3665, "total_steps": 3906, "loss": 1.3146, "learning_rate": 3.823152408857933e-07, "epoch": 0.93824, "percentage": 93.83, "elapsed_time": "13:28:19", "remaining_time": "0:53:09"}
3666
+ {"current_steps": 3666, "total_steps": 3906, "loss": 1.3011, "learning_rate": 3.7915912502550333e-07, "epoch": 0.938496, "percentage": 93.86, "elapsed_time": "13:28:32", "remaining_time": "0:52:55"}
3667
+ {"current_steps": 3667, "total_steps": 3906, "loss": 1.2981, "learning_rate": 3.7601596584237567e-07, "epoch": 0.938752, "percentage": 93.88, "elapsed_time": "13:28:45", "remaining_time": "0:52:42"}
3668
+ {"current_steps": 3668, "total_steps": 3906, "loss": 1.2861, "learning_rate": 3.728857654120055e-07, "epoch": 0.939008, "percentage": 93.91, "elapsed_time": "13:28:59", "remaining_time": "0:52:29"}
3669
+ {"current_steps": 3669, "total_steps": 3906, "loss": 1.3512, "learning_rate": 3.6976852580142833e-07, "epoch": 0.939264, "percentage": 93.93, "elapsed_time": "13:29:12", "remaining_time": "0:52:16"}
3670
+ {"current_steps": 3670, "total_steps": 3906, "loss": 1.3297, "learning_rate": 3.666642490691241e-07, "epoch": 0.93952, "percentage": 93.96, "elapsed_time": "13:29:25", "remaining_time": "0:52:03"}
3671
+ {"current_steps": 3671, "total_steps": 3906, "loss": 1.3437, "learning_rate": 3.6357293726501097e-07, "epoch": 0.939776, "percentage": 93.98, "elapsed_time": "13:29:39", "remaining_time": "0:51:49"}
3672
+ {"current_steps": 3672, "total_steps": 3906, "loss": 1.3731, "learning_rate": 3.6049459243044483e-07, "epoch": 0.940032, "percentage": 94.01, "elapsed_time": "13:29:52", "remaining_time": "0:51:36"}
3673
+ {"current_steps": 3673, "total_steps": 3906, "loss": 1.3146, "learning_rate": 3.574292165982196e-07, "epoch": 0.940288, "percentage": 94.03, "elapsed_time": "13:30:05", "remaining_time": "0:51:23"}
3674
+ {"current_steps": 3674, "total_steps": 3906, "loss": 1.3128, "learning_rate": 3.543768117925606e-07, "epoch": 0.940544, "percentage": 94.06, "elapsed_time": "13:30:19", "remaining_time": "0:51:10"}
3675
+ {"current_steps": 3675, "total_steps": 3906, "loss": 1.3227, "learning_rate": 3.5133738002913756e-07, "epoch": 0.9408, "percentage": 94.09, "elapsed_time": "13:30:32", "remaining_time": "0:50:56"}
3676
+ {"current_steps": 3676, "total_steps": 3906, "loss": 1.3085, "learning_rate": 3.483109233150472e-07, "epoch": 0.941056, "percentage": 94.11, "elapsed_time": "13:30:45", "remaining_time": "0:50:43"}
3677
+ {"current_steps": 3677, "total_steps": 3906, "loss": 1.2747, "learning_rate": 3.4529744364881325e-07, "epoch": 0.941312, "percentage": 94.14, "elapsed_time": "13:30:58", "remaining_time": "0:50:30"}
3678
+ {"current_steps": 3678, "total_steps": 3906, "loss": 1.3138, "learning_rate": 3.422969430204015e-07, "epoch": 0.941568, "percentage": 94.16, "elapsed_time": "13:31:11", "remaining_time": "0:50:17"}
3679
+ {"current_steps": 3679, "total_steps": 3906, "loss": 1.3127, "learning_rate": 3.393094234111982e-07, "epoch": 0.941824, "percentage": 94.19, "elapsed_time": "13:31:25", "remaining_time": "0:50:03"}
3680
+ {"current_steps": 3680, "total_steps": 3906, "loss": 1.3649, "learning_rate": 3.3633488679402084e-07, "epoch": 0.94208, "percentage": 94.21, "elapsed_time": "13:31:38", "remaining_time": "0:49:50"}
3681
+ {"current_steps": 3681, "total_steps": 3906, "loss": 1.3135, "learning_rate": 3.3337333513311144e-07, "epoch": 0.942336, "percentage": 94.24, "elapsed_time": "13:31:51", "remaining_time": "0:49:37"}
3682
+ {"current_steps": 3682, "total_steps": 3906, "loss": 1.3012, "learning_rate": 3.304247703841412e-07, "epoch": 0.942592, "percentage": 94.27, "elapsed_time": "13:32:04", "remaining_time": "0:49:24"}
3683
+ {"current_steps": 3683, "total_steps": 3906, "loss": 1.3405, "learning_rate": 3.274891944942016e-07, "epoch": 0.942848, "percentage": 94.29, "elapsed_time": "13:32:17", "remaining_time": "0:49:10"}
3684
+ {"current_steps": 3684, "total_steps": 3906, "loss": 1.3059, "learning_rate": 3.245666094018107e-07, "epoch": 0.943104, "percentage": 94.32, "elapsed_time": "13:32:30", "remaining_time": "0:48:57"}
3685
+ {"current_steps": 3685, "total_steps": 3906, "loss": 1.33, "learning_rate": 3.216570170369004e-07, "epoch": 0.94336, "percentage": 94.34, "elapsed_time": "13:32:44", "remaining_time": "0:48:44"}
3686
+ {"current_steps": 3686, "total_steps": 3906, "loss": 1.3226, "learning_rate": 3.187604193208338e-07, "epoch": 0.943616, "percentage": 94.37, "elapsed_time": "13:32:57", "remaining_time": "0:48:31"}
3687
+ {"current_steps": 3687, "total_steps": 3906, "loss": 1.2867, "learning_rate": 3.158768181663874e-07, "epoch": 0.943872, "percentage": 94.39, "elapsed_time": "13:33:10", "remaining_time": "0:48:18"}
3688
+ {"current_steps": 3688, "total_steps": 3906, "loss": 1.3276, "learning_rate": 3.1300621547775136e-07, "epoch": 0.944128, "percentage": 94.42, "elapsed_time": "13:33:23", "remaining_time": "0:48:04"}
3689
+ {"current_steps": 3689, "total_steps": 3906, "loss": 1.2963, "learning_rate": 3.1014861315053825e-07, "epoch": 0.944384, "percentage": 94.44, "elapsed_time": "13:33:36", "remaining_time": "0:47:51"}
3690
+ {"current_steps": 3690, "total_steps": 3906, "loss": 1.2788, "learning_rate": 3.0730401307177414e-07, "epoch": 0.94464, "percentage": 94.47, "elapsed_time": "13:33:49", "remaining_time": "0:47:38"}
3691
+ {"current_steps": 3691, "total_steps": 3906, "loss": 1.3217, "learning_rate": 3.044724171198965e-07, "epoch": 0.944896, "percentage": 94.5, "elapsed_time": "13:34:02", "remaining_time": "0:47:25"}
3692
+ {"current_steps": 3692, "total_steps": 3906, "loss": 1.363, "learning_rate": 3.0165382716475846e-07, "epoch": 0.945152, "percentage": 94.52, "elapsed_time": "13:34:16", "remaining_time": "0:47:11"}
3693
+ {"current_steps": 3693, "total_steps": 3906, "loss": 1.3436, "learning_rate": 2.988482450676267e-07, "epoch": 0.945408, "percentage": 94.55, "elapsed_time": "13:34:29", "remaining_time": "0:46:58"}
3694
+ {"current_steps": 3694, "total_steps": 3906, "loss": 1.3533, "learning_rate": 2.960556726811703e-07, "epoch": 0.945664, "percentage": 94.57, "elapsed_time": "13:34:42", "remaining_time": "0:46:45"}
3695
+ {"current_steps": 3695, "total_steps": 3906, "loss": 1.3084, "learning_rate": 2.9327611184947644e-07, "epoch": 0.94592, "percentage": 94.6, "elapsed_time": "13:34:55", "remaining_time": "0:46:32"}
3696
+ {"current_steps": 3696, "total_steps": 3906, "loss": 1.3064, "learning_rate": 2.905095644080369e-07, "epoch": 0.946176, "percentage": 94.62, "elapsed_time": "13:35:08", "remaining_time": "0:46:18"}
3697
+ {"current_steps": 3697, "total_steps": 3906, "loss": 1.3112, "learning_rate": 2.877560321837436e-07, "epoch": 0.946432, "percentage": 94.65, "elapsed_time": "13:35:21", "remaining_time": "0:46:05"}
3698
+ {"current_steps": 3698, "total_steps": 3906, "loss": 1.2978, "learning_rate": 2.8501551699490206e-07, "epoch": 0.946688, "percentage": 94.67, "elapsed_time": "13:35:35", "remaining_time": "0:45:52"}
3699
+ {"current_steps": 3699, "total_steps": 3906, "loss": 1.3371, "learning_rate": 2.822880206512224e-07, "epoch": 0.946944, "percentage": 94.7, "elapsed_time": "13:35:48", "remaining_time": "0:45:39"}
3700
+ {"current_steps": 3700, "total_steps": 3906, "loss": 1.286, "learning_rate": 2.795735449538084e-07, "epoch": 0.9472, "percentage": 94.73, "elapsed_time": "13:36:01", "remaining_time": "0:45:25"}
3701
+ {"current_steps": 3701, "total_steps": 3906, "loss": 1.3667, "learning_rate": 2.7687209169517506e-07, "epoch": 0.947456, "percentage": 94.75, "elapsed_time": "13:36:14", "remaining_time": "0:45:12"}
3702
+ {"current_steps": 3702, "total_steps": 3906, "loss": 1.2784, "learning_rate": 2.7418366265923535e-07, "epoch": 0.947712, "percentage": 94.78, "elapsed_time": "13:36:27", "remaining_time": "0:44:59"}
3703
+ {"current_steps": 3703, "total_steps": 3906, "loss": 1.3151, "learning_rate": 2.715082596212981e-07, "epoch": 0.947968, "percentage": 94.8, "elapsed_time": "13:36:41", "remaining_time": "0:44:46"}
3704
+ {"current_steps": 3704, "total_steps": 3906, "loss": 1.3372, "learning_rate": 2.6884588434807456e-07, "epoch": 0.948224, "percentage": 94.83, "elapsed_time": "13:36:54", "remaining_time": "0:44:33"}
3705
+ {"current_steps": 3705, "total_steps": 3906, "loss": 1.3391, "learning_rate": 2.661965385976739e-07, "epoch": 0.94848, "percentage": 94.85, "elapsed_time": "13:37:07", "remaining_time": "0:44:19"}
3706
+ {"current_steps": 3706, "total_steps": 3906, "loss": 1.3025, "learning_rate": 2.6356022411959447e-07, "epoch": 0.948736, "percentage": 94.88, "elapsed_time": "13:37:20", "remaining_time": "0:44:06"}
3707
+ {"current_steps": 3707, "total_steps": 3906, "loss": 1.3055, "learning_rate": 2.60936942654737e-07, "epoch": 0.948992, "percentage": 94.91, "elapsed_time": "13:37:33", "remaining_time": "0:43:53"}
3708
+ {"current_steps": 3708, "total_steps": 3906, "loss": 1.3103, "learning_rate": 2.5832669593539583e-07, "epoch": 0.949248, "percentage": 94.93, "elapsed_time": "13:37:47", "remaining_time": "0:43:40"}
3709
+ {"current_steps": 3709, "total_steps": 3906, "loss": 1.2735, "learning_rate": 2.557294856852477e-07, "epoch": 0.949504, "percentage": 94.96, "elapsed_time": "13:38:00", "remaining_time": "0:43:26"}
3710
+ {"current_steps": 3710, "total_steps": 3906, "loss": 1.2836, "learning_rate": 2.531453136193718e-07, "epoch": 0.94976, "percentage": 94.98, "elapsed_time": "13:38:13", "remaining_time": "0:43:13"}
3711
+ {"current_steps": 3711, "total_steps": 3906, "loss": 1.3102, "learning_rate": 2.5057418144423196e-07, "epoch": 0.950016, "percentage": 95.01, "elapsed_time": "13:38:26", "remaining_time": "0:43:00"}
3712
+ {"current_steps": 3712, "total_steps": 3906, "loss": 1.3185, "learning_rate": 2.480160908576834e-07, "epoch": 0.950272, "percentage": 95.03, "elapsed_time": "13:38:39", "remaining_time": "0:42:47"}
3713
+ {"current_steps": 3713, "total_steps": 3906, "loss": 1.345, "learning_rate": 2.454710435489682e-07, "epoch": 0.950528, "percentage": 95.06, "elapsed_time": "13:38:52", "remaining_time": "0:42:33"}
3714
+ {"current_steps": 3714, "total_steps": 3906, "loss": 1.3118, "learning_rate": 2.4293904119871535e-07, "epoch": 0.950784, "percentage": 95.08, "elapsed_time": "13:39:05", "remaining_time": "0:42:20"}
3715
+ {"current_steps": 3715, "total_steps": 3906, "loss": 1.3038, "learning_rate": 2.4042008547894067e-07, "epoch": 0.95104, "percentage": 95.11, "elapsed_time": "13:39:19", "remaining_time": "0:42:07"}
3716
+ {"current_steps": 3716, "total_steps": 3906, "loss": 1.3189, "learning_rate": 2.3791417805304028e-07, "epoch": 0.951296, "percentage": 95.14, "elapsed_time": "13:39:32", "remaining_time": "0:41:54"}
3717
+ {"current_steps": 3717, "total_steps": 3906, "loss": 1.3144, "learning_rate": 2.3542132057580159e-07, "epoch": 0.951552, "percentage": 95.16, "elapsed_time": "13:39:45", "remaining_time": "0:41:40"}
3718
+ {"current_steps": 3718, "total_steps": 3906, "loss": 1.3296, "learning_rate": 2.3294151469338777e-07, "epoch": 0.951808, "percentage": 95.19, "elapsed_time": "13:39:58", "remaining_time": "0:41:27"}
3719
+ {"current_steps": 3719, "total_steps": 3906, "loss": 1.309, "learning_rate": 2.3047476204334452e-07, "epoch": 0.952064, "percentage": 95.21, "elapsed_time": "13:40:12", "remaining_time": "0:41:14"}
3720
+ {"current_steps": 3720, "total_steps": 3906, "loss": 1.3367, "learning_rate": 2.2802106425460214e-07, "epoch": 0.95232, "percentage": 95.24, "elapsed_time": "13:40:25", "remaining_time": "0:41:01"}
3721
+ {"current_steps": 3721, "total_steps": 3906, "loss": 1.2959, "learning_rate": 2.2558042294746451e-07, "epoch": 0.952576, "percentage": 95.26, "elapsed_time": "13:40:38", "remaining_time": "0:40:48"}
3722
+ {"current_steps": 3722, "total_steps": 3906, "loss": 1.3345, "learning_rate": 2.2315283973361578e-07, "epoch": 0.952832, "percentage": 95.29, "elapsed_time": "13:40:51", "remaining_time": "0:40:34"}
3723
+ {"current_steps": 3723, "total_steps": 3906, "loss": 1.3609, "learning_rate": 2.2073831621611808e-07, "epoch": 0.953088, "percentage": 95.31, "elapsed_time": "13:41:04", "remaining_time": "0:40:21"}
3724
+ {"current_steps": 3724, "total_steps": 3906, "loss": 1.3794, "learning_rate": 2.1833685398940706e-07, "epoch": 0.953344, "percentage": 95.34, "elapsed_time": "13:41:17", "remaining_time": "0:40:08"}
3725
+ {"current_steps": 3725, "total_steps": 3906, "loss": 1.3185, "learning_rate": 2.1594845463929648e-07, "epoch": 0.9536, "percentage": 95.37, "elapsed_time": "13:41:31", "remaining_time": "0:39:55"}
3726
+ {"current_steps": 3726, "total_steps": 3906, "loss": 1.3147, "learning_rate": 2.1357311974297356e-07, "epoch": 0.953856, "percentage": 95.39, "elapsed_time": "13:41:44", "remaining_time": "0:39:41"}
3727
+ {"current_steps": 3727, "total_steps": 3906, "loss": 1.2913, "learning_rate": 2.1121085086899694e-07, "epoch": 0.954112, "percentage": 95.42, "elapsed_time": "13:41:57", "remaining_time": "0:39:28"}
3728
+ {"current_steps": 3728, "total_steps": 3906, "loss": 1.2992, "learning_rate": 2.088616495772966e-07, "epoch": 0.954368, "percentage": 95.44, "elapsed_time": "13:42:10", "remaining_time": "0:39:15"}
3729
+ {"current_steps": 3729, "total_steps": 3906, "loss": 1.3428, "learning_rate": 2.065255174191716e-07, "epoch": 0.954624, "percentage": 95.47, "elapsed_time": "13:42:23", "remaining_time": "0:39:02"}
3730
+ {"current_steps": 3730, "total_steps": 3906, "loss": 1.328, "learning_rate": 2.0420245593729903e-07, "epoch": 0.95488, "percentage": 95.49, "elapsed_time": "13:42:37", "remaining_time": "0:38:48"}
3731
+ {"current_steps": 3731, "total_steps": 3906, "loss": 1.2997, "learning_rate": 2.0189246666571405e-07, "epoch": 0.955136, "percentage": 95.52, "elapsed_time": "13:42:50", "remaining_time": "0:38:35"}
3732
+ {"current_steps": 3732, "total_steps": 3906, "loss": 1.2968, "learning_rate": 1.9959555112982976e-07, "epoch": 0.955392, "percentage": 95.55, "elapsed_time": "13:43:03", "remaining_time": "0:38:22"}
3733
+ {"current_steps": 3733, "total_steps": 3906, "loss": 1.3177, "learning_rate": 1.973117108464173e-07, "epoch": 0.955648, "percentage": 95.57, "elapsed_time": "13:43:16", "remaining_time": "0:38:09"}
3734
+ {"current_steps": 3734, "total_steps": 3906, "loss": 1.2841, "learning_rate": 1.9504094732361479e-07, "epoch": 0.955904, "percentage": 95.6, "elapsed_time": "13:43:29", "remaining_time": "0:37:55"}
3735
+ {"current_steps": 3735, "total_steps": 3906, "loss": 1.3239, "learning_rate": 1.9278326206093156e-07, "epoch": 0.95616, "percentage": 95.62, "elapsed_time": "13:43:42", "remaining_time": "0:37:42"}
3736
+ {"current_steps": 3736, "total_steps": 3906, "loss": 1.3278, "learning_rate": 1.9053865654923287e-07, "epoch": 0.956416, "percentage": 95.65, "elapsed_time": "13:43:56", "remaining_time": "0:37:29"}
3737
+ {"current_steps": 3737, "total_steps": 3906, "loss": 1.3301, "learning_rate": 1.8830713227075305e-07, "epoch": 0.956672, "percentage": 95.67, "elapsed_time": "13:44:09", "remaining_time": "0:37:16"}
3738
+ {"current_steps": 3738, "total_steps": 3906, "loss": 1.3762, "learning_rate": 1.860886906990844e-07, "epoch": 0.956928, "percentage": 95.7, "elapsed_time": "13:44:22", "remaining_time": "0:37:03"}
3739
+ {"current_steps": 3739, "total_steps": 3906, "loss": 1.2802, "learning_rate": 1.8388333329918185e-07, "epoch": 0.957184, "percentage": 95.72, "elapsed_time": "13:44:35", "remaining_time": "0:36:49"}
3740
+ {"current_steps": 3740, "total_steps": 3906, "loss": 1.3022, "learning_rate": 1.8169106152735815e-07, "epoch": 0.95744, "percentage": 95.75, "elapsed_time": "13:44:48", "remaining_time": "0:36:36"}
3741
+ {"current_steps": 3741, "total_steps": 3906, "loss": 1.361, "learning_rate": 1.7951187683128645e-07, "epoch": 0.957696, "percentage": 95.78, "elapsed_time": "13:45:02", "remaining_time": "0:36:23"}
3742
+ {"current_steps": 3742, "total_steps": 3906, "loss": 1.2947, "learning_rate": 1.7734578064999564e-07, "epoch": 0.957952, "percentage": 95.8, "elapsed_time": "13:45:15", "remaining_time": "0:36:10"}
3743
+ {"current_steps": 3743, "total_steps": 3906, "loss": 1.2827, "learning_rate": 1.7519277441387705e-07, "epoch": 0.958208, "percentage": 95.83, "elapsed_time": "13:45:28", "remaining_time": "0:35:56"}
3744
+ {"current_steps": 3744, "total_steps": 3906, "loss": 1.3258, "learning_rate": 1.7305285954467345e-07, "epoch": 0.958464, "percentage": 95.85, "elapsed_time": "13:45:41", "remaining_time": "0:35:43"}
3745
+ {"current_steps": 3745, "total_steps": 3906, "loss": 1.2919, "learning_rate": 1.709260374554811e-07, "epoch": 0.95872, "percentage": 95.88, "elapsed_time": "13:45:54", "remaining_time": "0:35:30"}
3746
+ {"current_steps": 3746, "total_steps": 3906, "loss": 1.2886, "learning_rate": 1.6881230955075435e-07, "epoch": 0.958976, "percentage": 95.9, "elapsed_time": "13:46:07", "remaining_time": "0:35:17"}
3747
+ {"current_steps": 3747, "total_steps": 3906, "loss": 1.3493, "learning_rate": 1.667116772262989e-07, "epoch": 0.959232, "percentage": 95.93, "elapsed_time": "13:46:21", "remaining_time": "0:35:03"}
3748
+ {"current_steps": 3748, "total_steps": 3906, "loss": 1.3398, "learning_rate": 1.64624141869274e-07, "epoch": 0.959488, "percentage": 95.95, "elapsed_time": "13:46:34", "remaining_time": "0:34:50"}
3749
+ {"current_steps": 3749, "total_steps": 3906, "loss": 1.3687, "learning_rate": 1.6254970485819032e-07, "epoch": 0.959744, "percentage": 95.98, "elapsed_time": "13:46:47", "remaining_time": "0:34:37"}
3750
+ {"current_steps": 3750, "total_steps": 3906, "loss": 1.3725, "learning_rate": 1.6048836756290542e-07, "epoch": 0.96, "percentage": 96.01, "elapsed_time": "13:47:00", "remaining_time": "0:34:24"}
3751
+ {"current_steps": 3751, "total_steps": 3906, "loss": 1.3681, "learning_rate": 1.5844013134463265e-07, "epoch": 0.960256, "percentage": 96.03, "elapsed_time": "13:47:13", "remaining_time": "0:34:10"}
3752
+ {"current_steps": 3752, "total_steps": 3906, "loss": 1.319, "learning_rate": 1.5640499755592786e-07, "epoch": 0.960512, "percentage": 96.06, "elapsed_time": "13:47:27", "remaining_time": "0:33:57"}
3753
+ {"current_steps": 3753, "total_steps": 3906, "loss": 1.3018, "learning_rate": 1.5438296754069827e-07, "epoch": 0.960768, "percentage": 96.08, "elapsed_time": "13:47:40", "remaining_time": "0:33:44"}
3754
+ {"current_steps": 3754, "total_steps": 3906, "loss": 1.2673, "learning_rate": 1.5237404263419575e-07, "epoch": 0.961024, "percentage": 96.11, "elapsed_time": "13:47:53", "remaining_time": "0:33:31"}
3755
+ {"current_steps": 3755, "total_steps": 3906, "loss": 1.3371, "learning_rate": 1.503782241630236e-07, "epoch": 0.96128, "percentage": 96.13, "elapsed_time": "13:48:06", "remaining_time": "0:33:18"}
3756
+ {"current_steps": 3756, "total_steps": 3906, "loss": 1.309, "learning_rate": 1.4839551344512093e-07, "epoch": 0.961536, "percentage": 96.16, "elapsed_time": "13:48:19", "remaining_time": "0:33:04"}
3757
+ {"current_steps": 3757, "total_steps": 3906, "loss": 1.2886, "learning_rate": 1.464259117897804e-07, "epoch": 0.961792, "percentage": 96.19, "elapsed_time": "13:48:32", "remaining_time": "0:32:51"}
3758
+ {"current_steps": 3758, "total_steps": 3906, "loss": 1.31, "learning_rate": 1.4446942049762824e-07, "epoch": 0.962048, "percentage": 96.21, "elapsed_time": "13:48:46", "remaining_time": "0:32:38"}
3759
+ {"current_steps": 3759, "total_steps": 3906, "loss": 1.3251, "learning_rate": 1.425260408606466e-07, "epoch": 0.962304, "percentage": 96.24, "elapsed_time": "13:48:59", "remaining_time": "0:32:25"}
3760
+ {"current_steps": 3760, "total_steps": 3906, "loss": 1.2766, "learning_rate": 1.4059577416214442e-07, "epoch": 0.96256, "percentage": 96.26, "elapsed_time": "13:49:12", "remaining_time": "0:32:11"}
3761
+ {"current_steps": 3761, "total_steps": 3906, "loss": 1.3247, "learning_rate": 1.3867862167678438e-07, "epoch": 0.962816, "percentage": 96.29, "elapsed_time": "13:49:25", "remaining_time": "0:31:58"}
3762
+ {"current_steps": 3762, "total_steps": 3906, "loss": 1.3404, "learning_rate": 1.3677458467056258e-07, "epoch": 0.963072, "percentage": 96.31, "elapsed_time": "13:49:38", "remaining_time": "0:31:45"}
3763
+ {"current_steps": 3763, "total_steps": 3906, "loss": 1.3426, "learning_rate": 1.3488366440081112e-07, "epoch": 0.963328, "percentage": 96.34, "elapsed_time": "13:49:52", "remaining_time": "0:31:32"}
3764
+ {"current_steps": 3764, "total_steps": 3906, "loss": 1.333, "learning_rate": 1.3300586211620892e-07, "epoch": 0.963584, "percentage": 96.36, "elapsed_time": "13:50:05", "remaining_time": "0:31:18"}
3765
+ {"current_steps": 3765, "total_steps": 3906, "loss": 1.3554, "learning_rate": 1.3114117905676625e-07, "epoch": 0.96384, "percentage": 96.39, "elapsed_time": "13:50:18", "remaining_time": "0:31:05"}
3766
+ {"current_steps": 3766, "total_steps": 3906, "loss": 1.3734, "learning_rate": 1.2928961645383154e-07, "epoch": 0.964096, "percentage": 96.42, "elapsed_time": "13:50:31", "remaining_time": "0:30:52"}
3767
+ {"current_steps": 3767, "total_steps": 3906, "loss": 1.3592, "learning_rate": 1.2745117553009113e-07, "epoch": 0.964352, "percentage": 96.44, "elapsed_time": "13:50:44", "remaining_time": "0:30:39"}
3768
+ {"current_steps": 3768, "total_steps": 3906, "loss": 1.2974, "learning_rate": 1.2562585749956058e-07, "epoch": 0.964608, "percentage": 96.47, "elapsed_time": "13:50:57", "remaining_time": "0:30:26"}
3769
+ {"current_steps": 3769, "total_steps": 3906, "loss": 1.3719, "learning_rate": 1.2381366356759794e-07, "epoch": 0.964864, "percentage": 96.49, "elapsed_time": "13:51:11", "remaining_time": "0:30:12"}
3770
+ {"current_steps": 3770, "total_steps": 3906, "loss": 1.3179, "learning_rate": 1.2201459493088818e-07, "epoch": 0.96512, "percentage": 96.52, "elapsed_time": "13:51:24", "remaining_time": "0:29:59"}
3771
+ {"current_steps": 3771, "total_steps": 3906, "loss": 1.3383, "learning_rate": 1.202286527774521e-07, "epoch": 0.965376, "percentage": 96.54, "elapsed_time": "13:51:37", "remaining_time": "0:29:46"}
3772
+ {"current_steps": 3772, "total_steps": 3906, "loss": 1.2903, "learning_rate": 1.1845583828664187e-07, "epoch": 0.965632, "percentage": 96.57, "elapsed_time": "13:51:50", "remaining_time": "0:29:33"}
3773
+ {"current_steps": 3773, "total_steps": 3906, "loss": 1.2915, "learning_rate": 1.1669615262914102e-07, "epoch": 0.965888, "percentage": 96.59, "elapsed_time": "13:52:03", "remaining_time": "0:29:19"}
3774
+ {"current_steps": 3774, "total_steps": 3906, "loss": 1.3032, "learning_rate": 1.1494959696696006e-07, "epoch": 0.966144, "percentage": 96.62, "elapsed_time": "13:52:17", "remaining_time": "0:29:06"}
3775
+ {"current_steps": 3775, "total_steps": 3906, "loss": 1.3015, "learning_rate": 1.132161724534453e-07, "epoch": 0.9664, "percentage": 96.65, "elapsed_time": "13:52:30", "remaining_time": "0:28:53"}
3776
+ {"current_steps": 3776, "total_steps": 3906, "loss": 1.3193, "learning_rate": 1.1149588023326773e-07, "epoch": 0.966656, "percentage": 96.67, "elapsed_time": "13:52:43", "remaining_time": "0:28:40"}
3777
+ {"current_steps": 3777, "total_steps": 3906, "loss": 1.336, "learning_rate": 1.0978872144242536e-07, "epoch": 0.966912, "percentage": 96.7, "elapsed_time": "13:52:56", "remaining_time": "0:28:26"}
3778
+ {"current_steps": 3778, "total_steps": 3906, "loss": 1.285, "learning_rate": 1.080946972082475e-07, "epoch": 0.967168, "percentage": 96.72, "elapsed_time": "13:53:09", "remaining_time": "0:28:13"}
3779
+ {"current_steps": 3779, "total_steps": 3906, "loss": 1.3381, "learning_rate": 1.06413808649386e-07, "epoch": 0.967424, "percentage": 96.75, "elapsed_time": "13:53:22", "remaining_time": "0:28:00"}
3780
+ {"current_steps": 3780, "total_steps": 3906, "loss": 1.2928, "learning_rate": 1.0474605687581962e-07, "epoch": 0.96768, "percentage": 96.77, "elapsed_time": "13:53:36", "remaining_time": "0:27:47"}
3781
+ {"current_steps": 3781, "total_steps": 3906, "loss": 1.3334, "learning_rate": 1.0309144298885631e-07, "epoch": 0.967936, "percentage": 96.8, "elapsed_time": "13:53:49", "remaining_time": "0:27:33"}
3782
+ {"current_steps": 3782, "total_steps": 3906, "loss": 1.3172, "learning_rate": 1.0144996808112207e-07, "epoch": 0.968192, "percentage": 96.83, "elapsed_time": "13:54:02", "remaining_time": "0:27:20"}
3783
+ {"current_steps": 3783, "total_steps": 3906, "loss": 1.3449, "learning_rate": 9.982163323656979e-08, "epoch": 0.968448, "percentage": 96.85, "elapsed_time": "13:54:15", "remaining_time": "0:27:07"}
3784
+ {"current_steps": 3784, "total_steps": 3906, "loss": 1.3314, "learning_rate": 9.820643953047715e-08, "epoch": 0.968704, "percentage": 96.88, "elapsed_time": "13:54:28", "remaining_time": "0:26:54"}
3785
+ {"current_steps": 3785, "total_steps": 3906, "loss": 1.3432, "learning_rate": 9.660438802943761e-08, "epoch": 0.96896, "percentage": 96.9, "elapsed_time": "13:54:42", "remaining_time": "0:26:41"}
3786
+ {"current_steps": 3786, "total_steps": 3906, "loss": 1.3357, "learning_rate": 9.501547979137383e-08, "epoch": 0.969216, "percentage": 96.93, "elapsed_time": "13:54:55", "remaining_time": "0:26:27"}
3787
+ {"current_steps": 3787, "total_steps": 3906, "loss": 1.3661, "learning_rate": 9.343971586552648e-08, "epoch": 0.969472, "percentage": 96.95, "elapsed_time": "13:55:08", "remaining_time": "0:26:14"}
3788
+ {"current_steps": 3788, "total_steps": 3906, "loss": 1.3161, "learning_rate": 9.187709729245432e-08, "epoch": 0.969728, "percentage": 96.98, "elapsed_time": "13:55:21", "remaining_time": "0:26:01"}
3789
+ {"current_steps": 3789, "total_steps": 3906, "loss": 1.3572, "learning_rate": 9.032762510403636e-08, "epoch": 0.969984, "percentage": 97.0, "elapsed_time": "13:55:34", "remaining_time": "0:25:48"}
3790
+ {"current_steps": 3790, "total_steps": 3906, "loss": 1.307, "learning_rate": 8.879130032346973e-08, "epoch": 0.97024, "percentage": 97.03, "elapsed_time": "13:55:48", "remaining_time": "0:25:34"}
3791
+ {"current_steps": 3791, "total_steps": 3906, "loss": 1.3273, "learning_rate": 8.726812396527174e-08, "epoch": 0.970496, "percentage": 97.06, "elapsed_time": "13:56:01", "remaining_time": "0:25:21"}
3792
+ {"current_steps": 3792, "total_steps": 3906, "loss": 1.3038, "learning_rate": 8.575809703527782e-08, "epoch": 0.970752, "percentage": 97.08, "elapsed_time": "13:56:14", "remaining_time": "0:25:08"}
3793
+ {"current_steps": 3793, "total_steps": 3906, "loss": 1.334, "learning_rate": 8.4261220530637e-08, "epoch": 0.971008, "percentage": 97.11, "elapsed_time": "13:56:27", "remaining_time": "0:24:55"}
3794
+ {"current_steps": 3794, "total_steps": 3906, "loss": 1.3121, "learning_rate": 8.277749543981861e-08, "epoch": 0.971264, "percentage": 97.13, "elapsed_time": "13:56:41", "remaining_time": "0:24:41"}
3795
+ {"current_steps": 3795, "total_steps": 3906, "loss": 1.3579, "learning_rate": 8.130692274259888e-08, "epoch": 0.97152, "percentage": 97.16, "elapsed_time": "13:56:54", "remaining_time": "0:24:28"}
3796
+ {"current_steps": 3796, "total_steps": 3906, "loss": 1.3002, "learning_rate": 7.98495034100788e-08, "epoch": 0.971776, "percentage": 97.18, "elapsed_time": "13:57:07", "remaining_time": "0:24:15"}
3797
+ {"current_steps": 3797, "total_steps": 3906, "loss": 1.2895, "learning_rate": 7.840523840467074e-08, "epoch": 0.972032, "percentage": 97.21, "elapsed_time": "13:57:20", "remaining_time": "0:24:02"}
3798
+ {"current_steps": 3798, "total_steps": 3906, "loss": 1.3022, "learning_rate": 7.697412868009402e-08, "epoch": 0.972288, "percentage": 97.24, "elapsed_time": "13:57:33", "remaining_time": "0:23:49"}
3799
+ {"current_steps": 3799, "total_steps": 3906, "loss": 1.3607, "learning_rate": 7.555617518139047e-08, "epoch": 0.972544, "percentage": 97.26, "elapsed_time": "13:57:47", "remaining_time": "0:23:35"}
3800
+ {"current_steps": 3800, "total_steps": 3906, "loss": 1.2955, "learning_rate": 7.415137884490886e-08, "epoch": 0.9728, "percentage": 97.29, "elapsed_time": "13:58:00", "remaining_time": "0:23:22"}
3801
+ {"current_steps": 3801, "total_steps": 3906, "loss": 1.3439, "learning_rate": 7.275974059830714e-08, "epoch": 0.973056, "percentage": 97.31, "elapsed_time": "13:58:13", "remaining_time": "0:23:09"}
3802
+ {"current_steps": 3802, "total_steps": 3906, "loss": 1.2672, "learning_rate": 7.138126136056134e-08, "epoch": 0.973312, "percentage": 97.34, "elapsed_time": "13:58:26", "remaining_time": "0:22:56"}
3803
+ {"current_steps": 3803, "total_steps": 3906, "loss": 1.3505, "learning_rate": 7.001594204195216e-08, "epoch": 0.973568, "percentage": 97.36, "elapsed_time": "13:58:39", "remaining_time": "0:22:42"}
3804
+ {"current_steps": 3804, "total_steps": 3906, "loss": 1.3299, "learning_rate": 6.866378354407399e-08, "epoch": 0.973824, "percentage": 97.39, "elapsed_time": "13:58:53", "remaining_time": "0:22:29"}
3805
+ {"current_steps": 3805, "total_steps": 3906, "loss": 1.2987, "learning_rate": 6.73247867598259e-08, "epoch": 0.97408, "percentage": 97.41, "elapsed_time": "13:59:06", "remaining_time": "0:22:16"}
3806
+ {"current_steps": 3806, "total_steps": 3906, "loss": 1.2844, "learning_rate": 6.599895257341837e-08, "epoch": 0.974336, "percentage": 97.44, "elapsed_time": "13:59:19", "remaining_time": "0:22:03"}
3807
+ {"current_steps": 3807, "total_steps": 3906, "loss": 1.3157, "learning_rate": 6.468628186037107e-08, "epoch": 0.974592, "percentage": 97.47, "elapsed_time": "13:59:32", "remaining_time": "0:21:49"}
3808
+ {"current_steps": 3808, "total_steps": 3906, "loss": 1.319, "learning_rate": 6.33867754875106e-08, "epoch": 0.974848, "percentage": 97.49, "elapsed_time": "13:59:45", "remaining_time": "0:21:36"}
3809
+ {"current_steps": 3809, "total_steps": 3906, "loss": 1.2966, "learning_rate": 6.210043431296608e-08, "epoch": 0.975104, "percentage": 97.52, "elapsed_time": "13:59:58", "remaining_time": "0:21:23"}
3810
+ {"current_steps": 3810, "total_steps": 3906, "loss": 1.3331, "learning_rate": 6.082725918618248e-08, "epoch": 0.97536, "percentage": 97.54, "elapsed_time": "14:00:12", "remaining_time": "0:21:10"}
3811
+ {"current_steps": 3811, "total_steps": 3906, "loss": 1.3371, "learning_rate": 5.956725094789839e-08, "epoch": 0.975616, "percentage": 97.57, "elapsed_time": "14:00:25", "remaining_time": "0:20:56"}
3812
+ {"current_steps": 3812, "total_steps": 3906, "loss": 1.3356, "learning_rate": 5.832041043016601e-08, "epoch": 0.975872, "percentage": 97.59, "elapsed_time": "14:00:38", "remaining_time": "0:20:43"}
3813
+ {"current_steps": 3813, "total_steps": 3906, "loss": 1.3476, "learning_rate": 5.708673845634005e-08, "epoch": 0.976128, "percentage": 97.62, "elapsed_time": "14:00:51", "remaining_time": "0:20:30"}
3814
+ {"current_steps": 3814, "total_steps": 3906, "loss": 1.3454, "learning_rate": 5.586623584107998e-08, "epoch": 0.976384, "percentage": 97.64, "elapsed_time": "14:01:04", "remaining_time": "0:20:17"}
3815
+ {"current_steps": 3815, "total_steps": 3906, "loss": 1.3614, "learning_rate": 5.465890339034774e-08, "epoch": 0.97664, "percentage": 97.67, "elapsed_time": "14:01:17", "remaining_time": "0:20:04"}
3816
+ {"current_steps": 3816, "total_steps": 3906, "loss": 1.3084, "learning_rate": 5.3464741901407826e-08, "epoch": 0.976896, "percentage": 97.7, "elapsed_time": "14:01:31", "remaining_time": "0:19:50"}
3817
+ {"current_steps": 3817, "total_steps": 3906, "loss": 1.3251, "learning_rate": 5.228375216282944e-08, "epoch": 0.977152, "percentage": 97.72, "elapsed_time": "14:01:44", "remaining_time": "0:19:37"}
3818
+ {"current_steps": 3818, "total_steps": 3906, "loss": 1.3115, "learning_rate": 5.1115934954482086e-08, "epoch": 0.977408, "percentage": 97.75, "elapsed_time": "14:01:57", "remaining_time": "0:19:24"}
3819
+ {"current_steps": 3819, "total_steps": 3906, "loss": 1.3228, "learning_rate": 4.996129104753555e-08, "epoch": 0.977664, "percentage": 97.77, "elapsed_time": "14:02:10", "remaining_time": "0:19:11"}
3820
+ {"current_steps": 3820, "total_steps": 3906, "loss": 1.3732, "learning_rate": 4.881982120446438e-08, "epoch": 0.97792, "percentage": 97.8, "elapsed_time": "14:02:23", "remaining_time": "0:18:57"}
3821
+ {"current_steps": 3821, "total_steps": 3906, "loss": 1.2845, "learning_rate": 4.769152617904116e-08, "epoch": 0.978176, "percentage": 97.82, "elapsed_time": "14:02:37", "remaining_time": "0:18:44"}
3822
+ {"current_steps": 3822, "total_steps": 3906, "loss": 1.2761, "learning_rate": 4.657640671633656e-08, "epoch": 0.978432, "percentage": 97.85, "elapsed_time": "14:02:50", "remaining_time": "0:18:31"}
3823
+ {"current_steps": 3823, "total_steps": 3906, "loss": 1.3567, "learning_rate": 4.547446355272378e-08, "epoch": 0.978688, "percentage": 97.88, "elapsed_time": "14:03:03", "remaining_time": "0:18:18"}
3824
+ {"current_steps": 3824, "total_steps": 3906, "loss": 1.3442, "learning_rate": 4.438569741587628e-08, "epoch": 0.978944, "percentage": 97.9, "elapsed_time": "14:03:16", "remaining_time": "0:18:04"}
3825
+ {"current_steps": 3825, "total_steps": 3906, "loss": 1.3246, "learning_rate": 4.331010902476118e-08, "epoch": 0.9792, "percentage": 97.93, "elapsed_time": "14:03:29", "remaining_time": "0:17:51"}
3826
+ {"current_steps": 3826, "total_steps": 3906, "loss": 1.3278, "learning_rate": 4.2247699089648097e-08, "epoch": 0.979456, "percentage": 97.95, "elapsed_time": "14:03:42", "remaining_time": "0:17:38"}
3827
+ {"current_steps": 3827, "total_steps": 3906, "loss": 1.2393, "learning_rate": 4.119846831210028e-08, "epoch": 0.979712, "percentage": 97.98, "elapsed_time": "14:03:55", "remaining_time": "0:17:25"}
3828
+ {"current_steps": 3828, "total_steps": 3906, "loss": 1.3397, "learning_rate": 4.0162417384981275e-08, "epoch": 0.979968, "percentage": 98.0, "elapsed_time": "14:04:09", "remaining_time": "0:17:12"}
3829
+ {"current_steps": 3829, "total_steps": 3906, "loss": 1.3276, "learning_rate": 3.9139546992450484e-08, "epoch": 0.980224, "percentage": 98.03, "elapsed_time": "14:04:22", "remaining_time": "0:16:58"}
3830
+ {"current_steps": 3830, "total_steps": 3906, "loss": 1.2707, "learning_rate": 3.8129857809965365e-08, "epoch": 0.98048, "percentage": 98.05, "elapsed_time": "14:04:35", "remaining_time": "0:16:45"}
3831
+ {"current_steps": 3831, "total_steps": 3906, "loss": 1.3485, "learning_rate": 3.713335050427258e-08, "epoch": 0.980736, "percentage": 98.08, "elapsed_time": "14:04:48", "remaining_time": "0:16:32"}
3832
+ {"current_steps": 3832, "total_steps": 3906, "loss": 1.3093, "learning_rate": 3.61500257334213e-08, "epoch": 0.980992, "percentage": 98.11, "elapsed_time": "14:05:01", "remaining_time": "0:16:19"}
3833
+ {"current_steps": 3833, "total_steps": 3906, "loss": 1.2442, "learning_rate": 3.517988414675211e-08, "epoch": 0.981248, "percentage": 98.13, "elapsed_time": "14:05:14", "remaining_time": "0:16:05"}
3834
+ {"current_steps": 3834, "total_steps": 3906, "loss": 1.3515, "learning_rate": 3.4222926384899214e-08, "epoch": 0.981504, "percentage": 98.16, "elapsed_time": "14:05:28", "remaining_time": "0:15:52"}
3835
+ {"current_steps": 3835, "total_steps": 3906, "loss": 1.3225, "learning_rate": 3.32791530797949e-08, "epoch": 0.98176, "percentage": 98.18, "elapsed_time": "14:05:41", "remaining_time": "0:15:39"}
3836
+ {"current_steps": 3836, "total_steps": 3906, "loss": 1.3245, "learning_rate": 3.234856485466287e-08, "epoch": 0.982016, "percentage": 98.21, "elapsed_time": "14:05:54", "remaining_time": "0:15:26"}
3837
+ {"current_steps": 3837, "total_steps": 3906, "loss": 1.3348, "learning_rate": 3.1431162324015994e-08, "epoch": 0.982272, "percentage": 98.23, "elapsed_time": "14:06:07", "remaining_time": "0:15:12"}
3838
+ {"current_steps": 3838, "total_steps": 3906, "loss": 1.2925, "learning_rate": 3.0526946093667466e-08, "epoch": 0.982528, "percentage": 98.26, "elapsed_time": "14:06:20", "remaining_time": "0:14:59"}
3839
+ {"current_steps": 3839, "total_steps": 3906, "loss": 1.3171, "learning_rate": 2.963591676071742e-08, "epoch": 0.982784, "percentage": 98.28, "elapsed_time": "14:06:34", "remaining_time": "0:14:46"}
3840
+ {"current_steps": 3840, "total_steps": 3906, "loss": 1.3069, "learning_rate": 2.8758074913559642e-08, "epoch": 0.98304, "percentage": 98.31, "elapsed_time": "14:06:47", "remaining_time": "0:14:33"}
3841
+ {"current_steps": 3841, "total_steps": 3906, "loss": 1.3142, "learning_rate": 2.7893421131877096e-08, "epoch": 0.983296, "percentage": 98.34, "elapsed_time": "14:07:00", "remaining_time": "0:14:20"}
3842
+ {"current_steps": 3842, "total_steps": 3906, "loss": 1.3741, "learning_rate": 2.7041955986650824e-08, "epoch": 0.983552, "percentage": 98.36, "elapsed_time": "14:07:13", "remaining_time": "0:14:06"}
3843
+ {"current_steps": 3843, "total_steps": 3906, "loss": 1.3068, "learning_rate": 2.6203680040146617e-08, "epoch": 0.983808, "percentage": 98.39, "elapsed_time": "14:07:26", "remaining_time": "0:13:53"}
3844
+ {"current_steps": 3844, "total_steps": 3906, "loss": 1.3354, "learning_rate": 2.5378593845919454e-08, "epoch": 0.984064, "percentage": 98.41, "elapsed_time": "14:07:39", "remaining_time": "0:13:40"}
3845
+ {"current_steps": 3845, "total_steps": 3906, "loss": 1.3531, "learning_rate": 2.4566697948822382e-08, "epoch": 0.98432, "percentage": 98.44, "elapsed_time": "14:07:53", "remaining_time": "0:13:27"}
3846
+ {"current_steps": 3846, "total_steps": 3906, "loss": 1.2826, "learning_rate": 2.3767992884988767e-08, "epoch": 0.984576, "percentage": 98.46, "elapsed_time": "14:08:06", "remaining_time": "0:13:13"}
3847
+ {"current_steps": 3847, "total_steps": 3906, "loss": 1.2948, "learning_rate": 2.2982479181847817e-08, "epoch": 0.984832, "percentage": 98.49, "elapsed_time": "14:08:19", "remaining_time": "0:13:00"}
3848
+ {"current_steps": 3848, "total_steps": 3906, "loss": 1.297, "learning_rate": 2.2210157358113492e-08, "epoch": 0.985088, "percentage": 98.52, "elapsed_time": "14:08:32", "remaining_time": "0:12:47"}
3849
+ {"current_steps": 3849, "total_steps": 3906, "loss": 1.2863, "learning_rate": 2.145102792379339e-08, "epoch": 0.985344, "percentage": 98.54, "elapsed_time": "14:08:45", "remaining_time": "0:12:34"}
3850
+ {"current_steps": 3850, "total_steps": 3906, "loss": 1.3367, "learning_rate": 2.0705091380182065e-08, "epoch": 0.9856, "percentage": 98.57, "elapsed_time": "14:08:59", "remaining_time": "0:12:20"}
3851
+ {"current_steps": 3851, "total_steps": 3906, "loss": 1.3638, "learning_rate": 1.9972348219854386e-08, "epoch": 0.985856, "percentage": 98.59, "elapsed_time": "14:09:12", "remaining_time": "0:12:07"}
3852
+ {"current_steps": 3852, "total_steps": 3906, "loss": 1.3619, "learning_rate": 1.9252798926685522e-08, "epoch": 0.986112, "percentage": 98.62, "elapsed_time": "14:09:25", "remaining_time": "0:11:54"}
3853
+ {"current_steps": 3853, "total_steps": 3906, "loss": 1.3545, "learning_rate": 1.8546443975830943e-08, "epoch": 0.986368, "percentage": 98.64, "elapsed_time": "14:09:38", "remaining_time": "0:11:41"}
3854
+ {"current_steps": 3854, "total_steps": 3906, "loss": 1.2893, "learning_rate": 1.7853283833730863e-08, "epoch": 0.986624, "percentage": 98.67, "elapsed_time": "14:09:51", "remaining_time": "0:11:28"}
3855
+ {"current_steps": 3855, "total_steps": 3906, "loss": 1.3023, "learning_rate": 1.7173318958119134e-08, "epoch": 0.98688, "percentage": 98.69, "elapsed_time": "14:10:04", "remaining_time": "0:11:14"}
3856
+ {"current_steps": 3856, "total_steps": 3906, "loss": 1.3251, "learning_rate": 1.6506549798009918e-08, "epoch": 0.987136, "percentage": 98.72, "elapsed_time": "14:10:18", "remaining_time": "0:11:01"}
3857
+ {"current_steps": 3857, "total_steps": 3906, "loss": 1.3082, "learning_rate": 1.5852976793708784e-08, "epoch": 0.987392, "percentage": 98.75, "elapsed_time": "14:10:31", "remaining_time": "0:10:48"}
3858
+ {"current_steps": 3858, "total_steps": 3906, "loss": 1.3498, "learning_rate": 1.521260037680161e-08, "epoch": 0.987648, "percentage": 98.77, "elapsed_time": "14:10:44", "remaining_time": "0:10:35"}
3859
+ {"current_steps": 3859, "total_steps": 3906, "loss": 1.2909, "learning_rate": 1.4585420970163466e-08, "epoch": 0.987904, "percentage": 98.8, "elapsed_time": "14:10:57", "remaining_time": "0:10:21"}
3860
+ {"current_steps": 3860, "total_steps": 3906, "loss": 1.3418, "learning_rate": 1.3971438987954167e-08, "epoch": 0.98816, "percentage": 98.82, "elapsed_time": "14:11:10", "remaining_time": "0:10:08"}
3861
+ {"current_steps": 3861, "total_steps": 3906, "loss": 1.3511, "learning_rate": 1.33706548356205e-08, "epoch": 0.988416, "percentage": 98.85, "elapsed_time": "14:11:24", "remaining_time": "0:09:55"}
3862
+ {"current_steps": 3862, "total_steps": 3906, "loss": 1.3147, "learning_rate": 1.2783068909889563e-08, "epoch": 0.988672, "percentage": 98.87, "elapsed_time": "14:11:37", "remaining_time": "0:09:42"}
3863
+ {"current_steps": 3863, "total_steps": 3906, "loss": 1.3625, "learning_rate": 1.2208681598775418e-08, "epoch": 0.988928, "percentage": 98.9, "elapsed_time": "14:11:50", "remaining_time": "0:09:28"}
3864
+ {"current_steps": 3864, "total_steps": 3906, "loss": 1.2752, "learning_rate": 1.1647493281576883e-08, "epoch": 0.989184, "percentage": 98.92, "elapsed_time": "14:12:03", "remaining_time": "0:09:15"}
3865
+ {"current_steps": 3865, "total_steps": 3906, "loss": 1.336, "learning_rate": 1.109950432887752e-08, "epoch": 0.98944, "percentage": 98.95, "elapsed_time": "14:12:16", "remaining_time": "0:09:02"}
3866
+ {"current_steps": 3866, "total_steps": 3906, "loss": 1.3145, "learning_rate": 1.05647151025412e-08, "epoch": 0.989696, "percentage": 98.98, "elapsed_time": "14:12:29", "remaining_time": "0:08:49"}
3867
+ {"current_steps": 3867, "total_steps": 3906, "loss": 1.371, "learning_rate": 1.0043125955718768e-08, "epoch": 0.989952, "percentage": 99.0, "elapsed_time": "14:12:43", "remaining_time": "0:08:35"}
3868
+ {"current_steps": 3868, "total_steps": 3906, "loss": 1.2792, "learning_rate": 9.534737232843595e-09, "epoch": 0.990208, "percentage": 99.03, "elapsed_time": "14:12:56", "remaining_time": "0:08:22"}
3869
+ {"current_steps": 3869, "total_steps": 3906, "loss": 1.3615, "learning_rate": 9.039549269629355e-09, "epoch": 0.990464, "percentage": 99.05, "elapsed_time": "14:13:09", "remaining_time": "0:08:09"}
3870
+ {"current_steps": 3870, "total_steps": 3906, "loss": 1.3399, "learning_rate": 8.557562393076701e-09, "epoch": 0.99072, "percentage": 99.08, "elapsed_time": "14:13:22", "remaining_time": "0:07:56"}
3871
+ {"current_steps": 3871, "total_steps": 3906, "loss": 1.3467, "learning_rate": 8.08877692146659e-09, "epoch": 0.990976, "percentage": 99.1, "elapsed_time": "14:13:35", "remaining_time": "0:07:43"}
3872
+ {"current_steps": 3872, "total_steps": 3906, "loss": 1.3042, "learning_rate": 7.633193164364727e-09, "epoch": 0.991232, "percentage": 99.13, "elapsed_time": "14:13:49", "remaining_time": "0:07:29"}
3873
+ {"current_steps": 3873, "total_steps": 3906, "loss": 1.3461, "learning_rate": 7.190811422612687e-09, "epoch": 0.991488, "percentage": 99.16, "elapsed_time": "14:14:02", "remaining_time": "0:07:16"}
3874
+ {"current_steps": 3874, "total_steps": 3906, "loss": 1.3177, "learning_rate": 6.761631988341233e-09, "epoch": 0.991744, "percentage": 99.18, "elapsed_time": "14:14:15", "remaining_time": "0:07:03"}
3875
+ {"current_steps": 3875, "total_steps": 3906, "loss": 1.3002, "learning_rate": 6.345655144961438e-09, "epoch": 0.992, "percentage": 99.21, "elapsed_time": "14:14:28", "remaining_time": "0:06:50"}
3876
+ {"current_steps": 3876, "total_steps": 3906, "loss": 1.3336, "learning_rate": 5.9428811671602415e-09, "epoch": 0.992256, "percentage": 99.23, "elapsed_time": "14:14:41", "remaining_time": "0:06:36"}
3877
+ {"current_steps": 3877, "total_steps": 3906, "loss": 1.3427, "learning_rate": 5.5533103209159945e-09, "epoch": 0.992512, "percentage": 99.26, "elapsed_time": "14:14:55", "remaining_time": "0:06:23"}
3878
+ {"current_steps": 3878, "total_steps": 3906, "loss": 1.2664, "learning_rate": 5.176942863480694e-09, "epoch": 0.992768, "percentage": 99.28, "elapsed_time": "14:15:08", "remaining_time": "0:06:10"}
3879
+ {"current_steps": 3879, "total_steps": 3906, "loss": 1.3132, "learning_rate": 4.8137790433888665e-09, "epoch": 0.993024, "percentage": 99.31, "elapsed_time": "14:15:21", "remaining_time": "0:05:57"}
3880
+ {"current_steps": 3880, "total_steps": 3906, "loss": 1.3084, "learning_rate": 4.463819100457567e-09, "epoch": 0.99328, "percentage": 99.33, "elapsed_time": "14:15:34", "remaining_time": "0:05:43"}
3881
+ {"current_steps": 3881, "total_steps": 3906, "loss": 1.2984, "learning_rate": 4.127063265781938e-09, "epoch": 0.993536, "percentage": 99.36, "elapsed_time": "14:15:47", "remaining_time": "0:05:30"}
3882
+ {"current_steps": 3882, "total_steps": 3906, "loss": 1.311, "learning_rate": 3.803511761744094e-09, "epoch": 0.993792, "percentage": 99.39, "elapsed_time": "14:16:01", "remaining_time": "0:05:17"}
3883
+ {"current_steps": 3883, "total_steps": 3906, "loss": 1.3433, "learning_rate": 3.4931648019975728e-09, "epoch": 0.994048, "percentage": 99.41, "elapsed_time": "14:16:14", "remaining_time": "0:05:04"}
3884
+ {"current_steps": 3884, "total_steps": 3906, "loss": 1.346, "learning_rate": 3.1960225914828834e-09, "epoch": 0.994304, "percentage": 99.44, "elapsed_time": "14:16:27", "remaining_time": "0:04:51"}
3885
+ {"current_steps": 3885, "total_steps": 3906, "loss": 1.3124, "learning_rate": 2.9120853264186232e-09, "epoch": 0.99456, "percentage": 99.46, "elapsed_time": "14:16:40", "remaining_time": "0:04:37"}
3886
+ {"current_steps": 3886, "total_steps": 3906, "loss": 1.2934, "learning_rate": 2.6413531943036976e-09, "epoch": 0.994816, "percentage": 99.49, "elapsed_time": "14:16:53", "remaining_time": "0:04:24"}
3887
+ {"current_steps": 3887, "total_steps": 3906, "loss": 1.3308, "learning_rate": 2.383826373915099e-09, "epoch": 0.995072, "percentage": 99.51, "elapsed_time": "14:17:06", "remaining_time": "0:04:11"}
3888
+ {"current_steps": 3888, "total_steps": 3906, "loss": 1.3299, "learning_rate": 2.1395050353145707e-09, "epoch": 0.995328, "percentage": 99.54, "elapsed_time": "14:17:20", "remaining_time": "0:03:58"}
3889
+ {"current_steps": 3889, "total_steps": 3906, "loss": 1.3553, "learning_rate": 1.908389339837502e-09, "epoch": 0.995584, "percentage": 99.56, "elapsed_time": "14:17:33", "remaining_time": "0:03:44"}
3890
+ {"current_steps": 3890, "total_steps": 3906, "loss": 1.3165, "learning_rate": 1.6904794401040313e-09, "epoch": 0.99584, "percentage": 99.59, "elapsed_time": "14:17:46", "remaining_time": "0:03:31"}
3891
+ {"current_steps": 3891, "total_steps": 3906, "loss": 1.2882, "learning_rate": 1.4857754800101654e-09, "epoch": 0.996096, "percentage": 99.62, "elapsed_time": "14:17:59", "remaining_time": "0:03:18"}
3892
+ {"current_steps": 3892, "total_steps": 3906, "loss": 1.3411, "learning_rate": 1.2942775947322184e-09, "epoch": 0.996352, "percentage": 99.64, "elapsed_time": "14:18:12", "remaining_time": "0:03:05"}
3893
+ {"current_steps": 3893, "total_steps": 3906, "loss": 1.3399, "learning_rate": 1.1159859107290337e-09, "epoch": 0.996608, "percentage": 99.67, "elapsed_time": "14:18:26", "remaining_time": "0:02:51"}
3894
+ {"current_steps": 3894, "total_steps": 3906, "loss": 1.3675, "learning_rate": 9.509005457331022e-10, "epoch": 0.996864, "percentage": 99.69, "elapsed_time": "14:18:39", "remaining_time": "0:02:38"}
3895
+ {"current_steps": 3895, "total_steps": 3906, "loss": 1.322, "learning_rate": 7.990216087594426e-10, "epoch": 0.99712, "percentage": 99.72, "elapsed_time": "14:18:52", "remaining_time": "0:02:25"}
3896
+ {"current_steps": 3896, "total_steps": 3906, "loss": 1.301, "learning_rate": 6.603492001033828e-10, "epoch": 0.997376, "percentage": 99.74, "elapsed_time": "14:19:05", "remaining_time": "0:02:12"}
3897
+ {"current_steps": 3897, "total_steps": 3906, "loss": 1.2745, "learning_rate": 5.348834113361179e-10, "epoch": 0.997632, "percentage": 99.77, "elapsed_time": "14:19:18", "remaining_time": "0:01:59"}
3898
+ {"current_steps": 3898, "total_steps": 3906, "loss": 1.3533, "learning_rate": 4.226243253091511e-10, "epoch": 0.997888, "percentage": 99.8, "elapsed_time": "14:19:32", "remaining_time": "0:01:45"}
3899
+ {"current_steps": 3899, "total_steps": 3906, "loss": 1.326, "learning_rate": 3.2357201615429434e-10, "epoch": 0.998144, "percentage": 99.82, "elapsed_time": "14:19:45", "remaining_time": "0:01:32"}
3900
+ {"current_steps": 3900, "total_steps": 3906, "loss": 1.3004, "learning_rate": 2.3772654928144733e-10, "epoch": 0.9984, "percentage": 99.85, "elapsed_time": "14:19:58", "remaining_time": "0:01:19"}
3901
+ {"current_steps": 3901, "total_steps": 3906, "loss": 1.3324, "learning_rate": 1.6508798137637727e-10, "epoch": 0.998656, "percentage": 99.87, "elapsed_time": "14:20:11", "remaining_time": "0:01:06"}
3902
+ {"current_steps": 3902, "total_steps": 3906, "loss": 1.3021, "learning_rate": 1.0565636040960059e-10, "epoch": 0.998912, "percentage": 99.9, "elapsed_time": "14:20:24", "remaining_time": "0:00:52"}
3903
+ {"current_steps": 3903, "total_steps": 3906, "loss": 1.2871, "learning_rate": 5.943172562306032e-11, "epoch": 0.999168, "percentage": 99.92, "elapsed_time": "14:20:37", "remaining_time": "0:00:39"}
3904
+ {"current_steps": 3904, "total_steps": 3906, "loss": 1.3023, "learning_rate": 2.64141075456692e-11, "epoch": 0.999424, "percentage": 99.95, "elapsed_time": "14:20:51", "remaining_time": "0:00:26"}
3905
+ {"current_steps": 3905, "total_steps": 3906, "loss": 1.3415, "learning_rate": 6.6035279755460865e-12, "epoch": 0.99968, "percentage": 99.97, "elapsed_time": "14:21:04", "remaining_time": "0:00:13"}
3906
+ {"current_steps": 3906, "total_steps": 3906, "loss": 1.3614, "learning_rate": 0.0, "epoch": 0.999936, "percentage": 100.0, "elapsed_time": "14:21:17", "remaining_time": "0:00:00"}
3907
+ {"current_steps": 3906, "total_steps": 3906, "epoch": 0.999936, "percentage": 100.0, "elapsed_time": "14:21:34", "remaining_time": "0:00:00"}