SKNahin commited on
Commit
5b0f784
1 Parent(s): cdc67af

Training in progress, step 3600

Browse files
model-00001-of-00002.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fbb1e84d77a5deed97b10d045242dbaece7d340be0b9efb4809f99cf708c119d
3
  size 4988025760
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd00e371d9821006b325604b99c425189b66d6bb91fe54dc00ded7e0898185f5
3
  size 4988025760
model-00002-of-00002.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:25e6d66ab5b7541b26588959d906d6dad3a447091db1fa8818ca69279e2a253b
3
  size 240691728
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd3f3625f72c43e50829d156042402257e4e1aeb755219fe95ef31c01c5c20c8
3
  size 240691728
trainer_log.jsonl CHANGED
@@ -3211,3 +3211,404 @@
3211
  {"current_steps": 3211, "total_steps": 3906, "loss": 1.3188, "learning_rate": 3.1057823443715174e-06, "epoch": 0.822016, "percentage": 82.21, "elapsed_time": "11:48:14", "remaining_time": "2:33:17"}
3212
  {"current_steps": 3212, "total_steps": 3906, "loss": 1.3695, "learning_rate": 3.0970892568307965e-06, "epoch": 0.822272, "percentage": 82.23, "elapsed_time": "11:48:27", "remaining_time": "2:33:04"}
3213
  {"current_steps": 3213, "total_steps": 3906, "loss": 1.3159, "learning_rate": 3.08840733117447e-06, "epoch": 0.822528, "percentage": 82.26, "elapsed_time": "11:48:41", "remaining_time": "2:32:51"}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3211
  {"current_steps": 3211, "total_steps": 3906, "loss": 1.3188, "learning_rate": 3.1057823443715174e-06, "epoch": 0.822016, "percentage": 82.21, "elapsed_time": "11:48:14", "remaining_time": "2:33:17"}
3212
  {"current_steps": 3212, "total_steps": 3906, "loss": 1.3695, "learning_rate": 3.0970892568307965e-06, "epoch": 0.822272, "percentage": 82.23, "elapsed_time": "11:48:27", "remaining_time": "2:33:04"}
3213
  {"current_steps": 3213, "total_steps": 3906, "loss": 1.3159, "learning_rate": 3.08840733117447e-06, "epoch": 0.822528, "percentage": 82.26, "elapsed_time": "11:48:41", "remaining_time": "2:32:51"}
3214
+ {"current_steps": 3214, "total_steps": 3906, "loss": 1.3182, "learning_rate": 3.079736573135681e-06, "epoch": 0.822784, "percentage": 82.28, "elapsed_time": "11:48:54", "remaining_time": "2:32:37"}
3215
+ {"current_steps": 3215, "total_steps": 3906, "loss": 1.3226, "learning_rate": 3.071076988440178e-06, "epoch": 0.82304, "percentage": 82.31, "elapsed_time": "11:49:07", "remaining_time": "2:32:24"}
3216
+ {"current_steps": 3216, "total_steps": 3906, "loss": 1.3054, "learning_rate": 3.0624285828063515e-06, "epoch": 0.823296, "percentage": 82.33, "elapsed_time": "11:49:20", "remaining_time": "2:32:11"}
3217
+ {"current_steps": 3217, "total_steps": 3906, "loss": 1.3107, "learning_rate": 3.0537913619451907e-06, "epoch": 0.823552, "percentage": 82.36, "elapsed_time": "11:49:33", "remaining_time": "2:31:58"}
3218
+ {"current_steps": 3218, "total_steps": 3906, "loss": 1.2848, "learning_rate": 3.0451653315603138e-06, "epoch": 0.823808, "percentage": 82.39, "elapsed_time": "11:49:47", "remaining_time": "2:31:45"}
3219
+ {"current_steps": 3219, "total_steps": 3906, "loss": 1.332, "learning_rate": 3.036550497347943e-06, "epoch": 0.824064, "percentage": 82.41, "elapsed_time": "11:50:00", "remaining_time": "2:31:31"}
3220
+ {"current_steps": 3220, "total_steps": 3906, "loss": 1.291, "learning_rate": 3.0279468649969133e-06, "epoch": 0.82432, "percentage": 82.44, "elapsed_time": "11:50:13", "remaining_time": "2:31:18"}
3221
+ {"current_steps": 3221, "total_steps": 3906, "loss": 1.3015, "learning_rate": 3.019354440188649e-06, "epoch": 0.824576, "percentage": 82.46, "elapsed_time": "11:50:26", "remaining_time": "2:31:05"}
3222
+ {"current_steps": 3222, "total_steps": 3906, "loss": 1.2859, "learning_rate": 3.0107732285971835e-06, "epoch": 0.824832, "percentage": 82.49, "elapsed_time": "11:50:39", "remaining_time": "2:30:52"}
3223
+ {"current_steps": 3223, "total_steps": 3906, "loss": 1.333, "learning_rate": 3.0022032358891493e-06, "epoch": 0.825088, "percentage": 82.51, "elapsed_time": "11:50:52", "remaining_time": "2:30:38"}
3224
+ {"current_steps": 3224, "total_steps": 3906, "loss": 1.3167, "learning_rate": 2.9936444677237597e-06, "epoch": 0.825344, "percentage": 82.54, "elapsed_time": "11:51:06", "remaining_time": "2:30:25"}
3225
+ {"current_steps": 3225, "total_steps": 3906, "loss": 1.3369, "learning_rate": 2.9850969297528266e-06, "epoch": 0.8256, "percentage": 82.57, "elapsed_time": "11:51:19", "remaining_time": "2:30:12"}
3226
+ {"current_steps": 3226, "total_steps": 3906, "loss": 1.35, "learning_rate": 2.9765606276207392e-06, "epoch": 0.825856, "percentage": 82.59, "elapsed_time": "11:51:32", "remaining_time": "2:29:59"}
3227
+ {"current_steps": 3227, "total_steps": 3906, "loss": 1.3403, "learning_rate": 2.9680355669644667e-06, "epoch": 0.826112, "percentage": 82.62, "elapsed_time": "11:51:45", "remaining_time": "2:29:45"}
3228
+ {"current_steps": 3228, "total_steps": 3906, "loss": 1.3691, "learning_rate": 2.9595217534135543e-06, "epoch": 0.826368, "percentage": 82.64, "elapsed_time": "11:51:58", "remaining_time": "2:29:32"}
3229
+ {"current_steps": 3229, "total_steps": 3906, "loss": 1.3722, "learning_rate": 2.951019192590123e-06, "epoch": 0.826624, "percentage": 82.67, "elapsed_time": "11:52:12", "remaining_time": "2:29:19"}
3230
+ {"current_steps": 3230, "total_steps": 3906, "loss": 1.3749, "learning_rate": 2.942527890108866e-06, "epoch": 0.82688, "percentage": 82.69, "elapsed_time": "11:52:25", "remaining_time": "2:29:06"}
3231
+ {"current_steps": 3231, "total_steps": 3906, "loss": 1.3549, "learning_rate": 2.9340478515770376e-06, "epoch": 0.827136, "percentage": 82.72, "elapsed_time": "11:52:38", "remaining_time": "2:28:52"}
3232
+ {"current_steps": 3232, "total_steps": 3906, "loss": 1.3213, "learning_rate": 2.925579082594454e-06, "epoch": 0.827392, "percentage": 82.74, "elapsed_time": "11:52:51", "remaining_time": "2:28:39"}
3233
+ {"current_steps": 3233, "total_steps": 3906, "loss": 1.3248, "learning_rate": 2.9171215887534955e-06, "epoch": 0.827648, "percentage": 82.77, "elapsed_time": "11:53:04", "remaining_time": "2:28:26"}
3234
+ {"current_steps": 3234, "total_steps": 3906, "loss": 1.3177, "learning_rate": 2.908675375639085e-06, "epoch": 0.827904, "percentage": 82.8, "elapsed_time": "11:53:17", "remaining_time": "2:28:13"}
3235
+ {"current_steps": 3235, "total_steps": 3906, "loss": 1.2733, "learning_rate": 2.900240448828704e-06, "epoch": 0.82816, "percentage": 82.82, "elapsed_time": "11:53:31", "remaining_time": "2:27:59"}
3236
+ {"current_steps": 3236, "total_steps": 3906, "loss": 1.3261, "learning_rate": 2.891816813892381e-06, "epoch": 0.828416, "percentage": 82.85, "elapsed_time": "11:53:44", "remaining_time": "2:27:46"}
3237
+ {"current_steps": 3237, "total_steps": 3906, "loss": 1.361, "learning_rate": 2.883404476392693e-06, "epoch": 0.828672, "percentage": 82.87, "elapsed_time": "11:53:57", "remaining_time": "2:27:33"}
3238
+ {"current_steps": 3238, "total_steps": 3906, "loss": 1.3252, "learning_rate": 2.8750034418847404e-06, "epoch": 0.828928, "percentage": 82.9, "elapsed_time": "11:54:10", "remaining_time": "2:27:20"}
3239
+ {"current_steps": 3239, "total_steps": 3906, "loss": 1.2903, "learning_rate": 2.8666137159161776e-06, "epoch": 0.829184, "percentage": 82.92, "elapsed_time": "11:54:23", "remaining_time": "2:27:06"}
3240
+ {"current_steps": 3240, "total_steps": 3906, "loss": 1.3346, "learning_rate": 2.8582353040271772e-06, "epoch": 0.82944, "percentage": 82.95, "elapsed_time": "11:54:36", "remaining_time": "2:26:53"}
3241
+ {"current_steps": 3241, "total_steps": 3906, "loss": 1.3529, "learning_rate": 2.8498682117504504e-06, "epoch": 0.829696, "percentage": 82.97, "elapsed_time": "11:54:50", "remaining_time": "2:26:40"}
3242
+ {"current_steps": 3242, "total_steps": 3906, "loss": 1.3394, "learning_rate": 2.8415124446112296e-06, "epoch": 0.829952, "percentage": 83.0, "elapsed_time": "11:55:03", "remaining_time": "2:26:27"}
3243
+ {"current_steps": 3243, "total_steps": 3906, "loss": 1.3537, "learning_rate": 2.8331680081272695e-06, "epoch": 0.830208, "percentage": 83.03, "elapsed_time": "11:55:16", "remaining_time": "2:26:13"}
3244
+ {"current_steps": 3244, "total_steps": 3906, "loss": 1.3207, "learning_rate": 2.824834907808842e-06, "epoch": 0.830464, "percentage": 83.05, "elapsed_time": "11:55:29", "remaining_time": "2:26:00"}
3245
+ {"current_steps": 3245, "total_steps": 3906, "loss": 1.3228, "learning_rate": 2.816513149158737e-06, "epoch": 0.83072, "percentage": 83.08, "elapsed_time": "11:55:42", "remaining_time": "2:25:47"}
3246
+ {"current_steps": 3246, "total_steps": 3906, "loss": 1.3583, "learning_rate": 2.808202737672243e-06, "epoch": 0.830976, "percentage": 83.1, "elapsed_time": "11:55:55", "remaining_time": "2:25:34"}
3247
+ {"current_steps": 3247, "total_steps": 3906, "loss": 1.3253, "learning_rate": 2.799903678837168e-06, "epoch": 0.831232, "percentage": 83.13, "elapsed_time": "11:56:09", "remaining_time": "2:25:20"}
3248
+ {"current_steps": 3248, "total_steps": 3906, "loss": 1.2968, "learning_rate": 2.791615978133817e-06, "epoch": 0.831488, "percentage": 83.15, "elapsed_time": "11:56:22", "remaining_time": "2:25:07"}
3249
+ {"current_steps": 3249, "total_steps": 3906, "loss": 1.2907, "learning_rate": 2.7833396410350034e-06, "epoch": 0.831744, "percentage": 83.18, "elapsed_time": "11:56:35", "remaining_time": "2:24:54"}
3250
+ {"current_steps": 3250, "total_steps": 3906, "loss": 1.36, "learning_rate": 2.7750746730060176e-06, "epoch": 0.832, "percentage": 83.21, "elapsed_time": "11:56:48", "remaining_time": "2:24:41"}
3251
+ {"current_steps": 3251, "total_steps": 3906, "loss": 1.3315, "learning_rate": 2.7668210795046667e-06, "epoch": 0.832256, "percentage": 83.23, "elapsed_time": "11:57:01", "remaining_time": "2:24:27"}
3252
+ {"current_steps": 3252, "total_steps": 3906, "loss": 1.3218, "learning_rate": 2.758578865981223e-06, "epoch": 0.832512, "percentage": 83.26, "elapsed_time": "11:57:14", "remaining_time": "2:24:14"}
3253
+ {"current_steps": 3253, "total_steps": 3906, "loss": 1.306, "learning_rate": 2.7503480378784607e-06, "epoch": 0.832768, "percentage": 83.28, "elapsed_time": "11:57:28", "remaining_time": "2:24:01"}
3254
+ {"current_steps": 3254, "total_steps": 3906, "loss": 1.345, "learning_rate": 2.7421286006316307e-06, "epoch": 0.833024, "percentage": 83.31, "elapsed_time": "11:57:41", "remaining_time": "2:23:48"}
3255
+ {"current_steps": 3255, "total_steps": 3906, "loss": 1.3494, "learning_rate": 2.7339205596684593e-06, "epoch": 0.83328, "percentage": 83.33, "elapsed_time": "11:57:54", "remaining_time": "2:23:34"}
3256
+ {"current_steps": 3256, "total_steps": 3906, "loss": 1.3339, "learning_rate": 2.725723920409149e-06, "epoch": 0.833536, "percentage": 83.36, "elapsed_time": "11:58:07", "remaining_time": "2:23:21"}
3257
+ {"current_steps": 3257, "total_steps": 3906, "loss": 1.3159, "learning_rate": 2.7175386882663812e-06, "epoch": 0.833792, "percentage": 83.38, "elapsed_time": "11:58:20", "remaining_time": "2:23:08"}
3258
+ {"current_steps": 3258, "total_steps": 3906, "loss": 1.2842, "learning_rate": 2.709364868645288e-06, "epoch": 0.834048, "percentage": 83.41, "elapsed_time": "11:58:34", "remaining_time": "2:22:55"}
3259
+ {"current_steps": 3259, "total_steps": 3906, "loss": 1.2873, "learning_rate": 2.7012024669434756e-06, "epoch": 0.834304, "percentage": 83.44, "elapsed_time": "11:58:47", "remaining_time": "2:22:41"}
3260
+ {"current_steps": 3260, "total_steps": 3906, "loss": 1.3397, "learning_rate": 2.693051488551013e-06, "epoch": 0.83456, "percentage": 83.46, "elapsed_time": "11:59:00", "remaining_time": "2:22:28"}
3261
+ {"current_steps": 3261, "total_steps": 3906, "loss": 1.2818, "learning_rate": 2.684911938850414e-06, "epoch": 0.834816, "percentage": 83.49, "elapsed_time": "11:59:13", "remaining_time": "2:22:15"}
3262
+ {"current_steps": 3262, "total_steps": 3906, "loss": 1.3088, "learning_rate": 2.67678382321666e-06, "epoch": 0.835072, "percentage": 83.51, "elapsed_time": "11:59:26", "remaining_time": "2:22:02"}
3263
+ {"current_steps": 3263, "total_steps": 3906, "loss": 1.3498, "learning_rate": 2.6686671470171743e-06, "epoch": 0.835328, "percentage": 83.54, "elapsed_time": "11:59:40", "remaining_time": "2:21:48"}
3264
+ {"current_steps": 3264, "total_steps": 3906, "loss": 1.3096, "learning_rate": 2.6605619156118212e-06, "epoch": 0.835584, "percentage": 83.56, "elapsed_time": "11:59:53", "remaining_time": "2:21:35"}
3265
+ {"current_steps": 3265, "total_steps": 3906, "loss": 1.3208, "learning_rate": 2.652468134352917e-06, "epoch": 0.83584, "percentage": 83.59, "elapsed_time": "12:00:06", "remaining_time": "2:21:22"}
3266
+ {"current_steps": 3266, "total_steps": 3906, "loss": 1.3274, "learning_rate": 2.6443858085852128e-06, "epoch": 0.836096, "percentage": 83.61, "elapsed_time": "12:00:19", "remaining_time": "2:21:09"}
3267
+ {"current_steps": 3267, "total_steps": 3906, "loss": 1.3334, "learning_rate": 2.6363149436458924e-06, "epoch": 0.836352, "percentage": 83.64, "elapsed_time": "12:00:32", "remaining_time": "2:20:56"}
3268
+ {"current_steps": 3268, "total_steps": 3906, "loss": 1.296, "learning_rate": 2.6282555448645796e-06, "epoch": 0.836608, "percentage": 83.67, "elapsed_time": "12:00:46", "remaining_time": "2:20:42"}
3269
+ {"current_steps": 3269, "total_steps": 3906, "loss": 1.3433, "learning_rate": 2.6202076175633196e-06, "epoch": 0.836864, "percentage": 83.69, "elapsed_time": "12:00:59", "remaining_time": "2:20:29"}
3270
+ {"current_steps": 3270, "total_steps": 3906, "loss": 1.3136, "learning_rate": 2.6121711670565787e-06, "epoch": 0.83712, "percentage": 83.72, "elapsed_time": "12:01:12", "remaining_time": "2:20:16"}
3271
+ {"current_steps": 3271, "total_steps": 3906, "loss": 1.2942, "learning_rate": 2.6041461986512517e-06, "epoch": 0.837376, "percentage": 83.74, "elapsed_time": "12:01:25", "remaining_time": "2:20:03"}
3272
+ {"current_steps": 3272, "total_steps": 3906, "loss": 1.2995, "learning_rate": 2.5961327176466533e-06, "epoch": 0.837632, "percentage": 83.77, "elapsed_time": "12:01:38", "remaining_time": "2:19:49"}
3273
+ {"current_steps": 3273, "total_steps": 3906, "loss": 1.2887, "learning_rate": 2.5881307293345016e-06, "epoch": 0.837888, "percentage": 83.79, "elapsed_time": "12:01:52", "remaining_time": "2:19:36"}
3274
+ {"current_steps": 3274, "total_steps": 3906, "loss": 1.367, "learning_rate": 2.580140238998934e-06, "epoch": 0.838144, "percentage": 83.82, "elapsed_time": "12:02:05", "remaining_time": "2:19:23"}
3275
+ {"current_steps": 3275, "total_steps": 3906, "loss": 1.3503, "learning_rate": 2.5721612519164984e-06, "epoch": 0.8384, "percentage": 83.85, "elapsed_time": "12:02:18", "remaining_time": "2:19:10"}
3276
+ {"current_steps": 3276, "total_steps": 3906, "loss": 1.3145, "learning_rate": 2.564193773356134e-06, "epoch": 0.838656, "percentage": 83.87, "elapsed_time": "12:02:31", "remaining_time": "2:18:56"}
3277
+ {"current_steps": 3277, "total_steps": 3906, "loss": 1.2878, "learning_rate": 2.5562378085791873e-06, "epoch": 0.838912, "percentage": 83.9, "elapsed_time": "12:02:44", "remaining_time": "2:18:43"}
3278
+ {"current_steps": 3278, "total_steps": 3906, "loss": 1.3428, "learning_rate": 2.5482933628394068e-06, "epoch": 0.839168, "percentage": 83.92, "elapsed_time": "12:02:57", "remaining_time": "2:18:30"}
3279
+ {"current_steps": 3279, "total_steps": 3906, "loss": 1.3493, "learning_rate": 2.54036044138293e-06, "epoch": 0.839424, "percentage": 83.95, "elapsed_time": "12:03:10", "remaining_time": "2:18:17"}
3280
+ {"current_steps": 3280, "total_steps": 3906, "loss": 1.3353, "learning_rate": 2.532439049448279e-06, "epoch": 0.83968, "percentage": 83.97, "elapsed_time": "12:03:24", "remaining_time": "2:18:03"}
3281
+ {"current_steps": 3281, "total_steps": 3906, "loss": 1.3308, "learning_rate": 2.524529192266374e-06, "epoch": 0.839936, "percentage": 84.0, "elapsed_time": "12:03:37", "remaining_time": "2:17:50"}
3282
+ {"current_steps": 3282, "total_steps": 3906, "loss": 1.3134, "learning_rate": 2.516630875060502e-06, "epoch": 0.840192, "percentage": 84.02, "elapsed_time": "12:03:50", "remaining_time": "2:17:37"}
3283
+ {"current_steps": 3283, "total_steps": 3906, "loss": 1.31, "learning_rate": 2.50874410304635e-06, "epoch": 0.840448, "percentage": 84.05, "elapsed_time": "12:04:03", "remaining_time": "2:17:24"}
3284
+ {"current_steps": 3284, "total_steps": 3906, "loss": 1.3085, "learning_rate": 2.500868881431957e-06, "epoch": 0.840704, "percentage": 84.08, "elapsed_time": "12:04:17", "remaining_time": "2:17:10"}
3285
+ {"current_steps": 3285, "total_steps": 3906, "loss": 1.3322, "learning_rate": 2.4930052154177563e-06, "epoch": 0.84096, "percentage": 84.1, "elapsed_time": "12:04:30", "remaining_time": "2:16:57"}
3286
+ {"current_steps": 3286, "total_steps": 3906, "loss": 1.348, "learning_rate": 2.4851531101965408e-06, "epoch": 0.841216, "percentage": 84.13, "elapsed_time": "12:04:43", "remaining_time": "2:16:44"}
3287
+ {"current_steps": 3287, "total_steps": 3906, "loss": 1.3231, "learning_rate": 2.4773125709534673e-06, "epoch": 0.841472, "percentage": 84.15, "elapsed_time": "12:04:56", "remaining_time": "2:16:31"}
3288
+ {"current_steps": 3288, "total_steps": 3906, "loss": 1.297, "learning_rate": 2.469483602866063e-06, "epoch": 0.841728, "percentage": 84.18, "elapsed_time": "12:05:09", "remaining_time": "2:16:17"}
3289
+ {"current_steps": 3289, "total_steps": 3906, "loss": 1.3157, "learning_rate": 2.4616662111042033e-06, "epoch": 0.841984, "percentage": 84.2, "elapsed_time": "12:05:22", "remaining_time": "2:16:04"}
3290
+ {"current_steps": 3290, "total_steps": 3906, "loss": 1.3402, "learning_rate": 2.453860400830126e-06, "epoch": 0.84224, "percentage": 84.23, "elapsed_time": "12:05:35", "remaining_time": "2:15:51"}
3291
+ {"current_steps": 3291, "total_steps": 3906, "loss": 1.2923, "learning_rate": 2.4460661771984227e-06, "epoch": 0.842496, "percentage": 84.25, "elapsed_time": "12:05:49", "remaining_time": "2:15:38"}
3292
+ {"current_steps": 3292, "total_steps": 3906, "loss": 1.3013, "learning_rate": 2.438283545356026e-06, "epoch": 0.842752, "percentage": 84.28, "elapsed_time": "12:06:02", "remaining_time": "2:15:24"}
3293
+ {"current_steps": 3293, "total_steps": 3906, "loss": 1.342, "learning_rate": 2.4305125104422267e-06, "epoch": 0.843008, "percentage": 84.31, "elapsed_time": "12:06:15", "remaining_time": "2:15:11"}
3294
+ {"current_steps": 3294, "total_steps": 3906, "loss": 1.3318, "learning_rate": 2.422753077588642e-06, "epoch": 0.843264, "percentage": 84.33, "elapsed_time": "12:06:28", "remaining_time": "2:14:58"}
3295
+ {"current_steps": 3295, "total_steps": 3906, "loss": 1.3435, "learning_rate": 2.415005251919238e-06, "epoch": 0.84352, "percentage": 84.36, "elapsed_time": "12:06:41", "remaining_time": "2:14:45"}
3296
+ {"current_steps": 3296, "total_steps": 3906, "loss": 1.314, "learning_rate": 2.4072690385503105e-06, "epoch": 0.843776, "percentage": 84.38, "elapsed_time": "12:06:54", "remaining_time": "2:14:31"}
3297
+ {"current_steps": 3297, "total_steps": 3906, "loss": 1.3459, "learning_rate": 2.3995444425904914e-06, "epoch": 0.844032, "percentage": 84.41, "elapsed_time": "12:07:08", "remaining_time": "2:14:18"}
3298
+ {"current_steps": 3298, "total_steps": 3906, "loss": 1.3145, "learning_rate": 2.3918314691407373e-06, "epoch": 0.844288, "percentage": 84.43, "elapsed_time": "12:07:21", "remaining_time": "2:14:05"}
3299
+ {"current_steps": 3299, "total_steps": 3906, "loss": 1.3444, "learning_rate": 2.384130123294337e-06, "epoch": 0.844544, "percentage": 84.46, "elapsed_time": "12:07:34", "remaining_time": "2:13:52"}
3300
+ {"current_steps": 3300, "total_steps": 3906, "loss": 1.3224, "learning_rate": 2.3764404101368954e-06, "epoch": 0.8448, "percentage": 84.49, "elapsed_time": "12:07:47", "remaining_time": "2:13:38"}
3301
+ {"current_steps": 3301, "total_steps": 3906, "loss": 1.3421, "learning_rate": 2.3687623347463284e-06, "epoch": 0.845056, "percentage": 84.51, "elapsed_time": "12:08:00", "remaining_time": "2:13:25"}
3302
+ {"current_steps": 3302, "total_steps": 3906, "loss": 1.3272, "learning_rate": 2.3610959021928803e-06, "epoch": 0.845312, "percentage": 84.54, "elapsed_time": "12:08:14", "remaining_time": "2:13:12"}
3303
+ {"current_steps": 3303, "total_steps": 3906, "loss": 1.2932, "learning_rate": 2.3534411175390994e-06, "epoch": 0.845568, "percentage": 84.56, "elapsed_time": "12:08:27", "remaining_time": "2:12:59"}
3304
+ {"current_steps": 3304, "total_steps": 3906, "loss": 1.3243, "learning_rate": 2.345797985839846e-06, "epoch": 0.845824, "percentage": 84.59, "elapsed_time": "12:08:40", "remaining_time": "2:12:46"}
3305
+ {"current_steps": 3305, "total_steps": 3906, "loss": 1.3079, "learning_rate": 2.338166512142286e-06, "epoch": 0.84608, "percentage": 84.61, "elapsed_time": "12:08:53", "remaining_time": "2:12:32"}
3306
+ {"current_steps": 3306, "total_steps": 3906, "loss": 1.3189, "learning_rate": 2.330546701485883e-06, "epoch": 0.846336, "percentage": 84.64, "elapsed_time": "12:09:06", "remaining_time": "2:12:19"}
3307
+ {"current_steps": 3307, "total_steps": 3906, "loss": 1.343, "learning_rate": 2.322938558902392e-06, "epoch": 0.846592, "percentage": 84.66, "elapsed_time": "12:09:19", "remaining_time": "2:12:06"}
3308
+ {"current_steps": 3308, "total_steps": 3906, "loss": 1.2661, "learning_rate": 2.3153420894158794e-06, "epoch": 0.846848, "percentage": 84.69, "elapsed_time": "12:09:33", "remaining_time": "2:11:53"}
3309
+ {"current_steps": 3309, "total_steps": 3906, "loss": 1.3481, "learning_rate": 2.3077572980426922e-06, "epoch": 0.847104, "percentage": 84.72, "elapsed_time": "12:09:46", "remaining_time": "2:11:39"}
3310
+ {"current_steps": 3310, "total_steps": 3906, "loss": 1.2837, "learning_rate": 2.30018418979147e-06, "epoch": 0.84736, "percentage": 84.74, "elapsed_time": "12:09:59", "remaining_time": "2:11:26"}
3311
+ {"current_steps": 3311, "total_steps": 3906, "loss": 1.334, "learning_rate": 2.2926227696631376e-06, "epoch": 0.847616, "percentage": 84.77, "elapsed_time": "12:10:12", "remaining_time": "2:11:13"}
3312
+ {"current_steps": 3312, "total_steps": 3906, "loss": 1.3284, "learning_rate": 2.2850730426509005e-06, "epoch": 0.847872, "percentage": 84.79, "elapsed_time": "12:10:25", "remaining_time": "2:11:00"}
3313
+ {"current_steps": 3313, "total_steps": 3906, "loss": 1.3244, "learning_rate": 2.2775350137402353e-06, "epoch": 0.848128, "percentage": 84.82, "elapsed_time": "12:10:39", "remaining_time": "2:10:46"}
3314
+ {"current_steps": 3314, "total_steps": 3906, "loss": 1.3386, "learning_rate": 2.2700086879089046e-06, "epoch": 0.848384, "percentage": 84.84, "elapsed_time": "12:10:52", "remaining_time": "2:10:33"}
3315
+ {"current_steps": 3315, "total_steps": 3906, "loss": 1.3276, "learning_rate": 2.262494070126939e-06, "epoch": 0.84864, "percentage": 84.87, "elapsed_time": "12:11:05", "remaining_time": "2:10:20"}
3316
+ {"current_steps": 3316, "total_steps": 3906, "loss": 1.2908, "learning_rate": 2.2549911653566416e-06, "epoch": 0.848896, "percentage": 84.9, "elapsed_time": "12:11:18", "remaining_time": "2:10:07"}
3317
+ {"current_steps": 3317, "total_steps": 3906, "loss": 1.3391, "learning_rate": 2.2474999785525698e-06, "epoch": 0.849152, "percentage": 84.92, "elapsed_time": "12:11:31", "remaining_time": "2:09:53"}
3318
+ {"current_steps": 3318, "total_steps": 3906, "loss": 1.2792, "learning_rate": 2.2400205146615537e-06, "epoch": 0.849408, "percentage": 84.95, "elapsed_time": "12:11:44", "remaining_time": "2:09:40"}
3319
+ {"current_steps": 3319, "total_steps": 3906, "loss": 1.2805, "learning_rate": 2.2325527786226743e-06, "epoch": 0.849664, "percentage": 84.97, "elapsed_time": "12:11:58", "remaining_time": "2:09:27"}
3320
+ {"current_steps": 3320, "total_steps": 3906, "loss": 1.3166, "learning_rate": 2.2250967753672747e-06, "epoch": 0.84992, "percentage": 85.0, "elapsed_time": "12:12:11", "remaining_time": "2:09:14"}
3321
+ {"current_steps": 3321, "total_steps": 3906, "loss": 1.3243, "learning_rate": 2.217652509818946e-06, "epoch": 0.850176, "percentage": 85.02, "elapsed_time": "12:12:24", "remaining_time": "2:09:00"}
3322
+ {"current_steps": 3322, "total_steps": 3906, "loss": 1.2978, "learning_rate": 2.2102199868935316e-06, "epoch": 0.850432, "percentage": 85.05, "elapsed_time": "12:12:37", "remaining_time": "2:08:47"}
3323
+ {"current_steps": 3323, "total_steps": 3906, "loss": 1.3273, "learning_rate": 2.202799211499118e-06, "epoch": 0.850688, "percentage": 85.07, "elapsed_time": "12:12:50", "remaining_time": "2:08:34"}
3324
+ {"current_steps": 3324, "total_steps": 3906, "loss": 1.3545, "learning_rate": 2.1953901885360395e-06, "epoch": 0.850944, "percentage": 85.1, "elapsed_time": "12:13:04", "remaining_time": "2:08:21"}
3325
+ {"current_steps": 3325, "total_steps": 3906, "loss": 1.3217, "learning_rate": 2.1879929228968554e-06, "epoch": 0.8512, "percentage": 85.13, "elapsed_time": "12:13:17", "remaining_time": "2:08:07"}
3326
+ {"current_steps": 3326, "total_steps": 3906, "loss": 1.3416, "learning_rate": 2.1806074194663783e-06, "epoch": 0.851456, "percentage": 85.15, "elapsed_time": "12:13:30", "remaining_time": "2:07:54"}
3327
+ {"current_steps": 3327, "total_steps": 3906, "loss": 1.3244, "learning_rate": 2.173233683121643e-06, "epoch": 0.851712, "percentage": 85.18, "elapsed_time": "12:13:43", "remaining_time": "2:07:41"}
3328
+ {"current_steps": 3328, "total_steps": 3906, "loss": 1.3189, "learning_rate": 2.1658717187319224e-06, "epoch": 0.851968, "percentage": 85.2, "elapsed_time": "12:13:56", "remaining_time": "2:07:28"}
3329
+ {"current_steps": 3329, "total_steps": 3906, "loss": 1.3081, "learning_rate": 2.1585215311587014e-06, "epoch": 0.852224, "percentage": 85.23, "elapsed_time": "12:14:09", "remaining_time": "2:07:14"}
3330
+ {"current_steps": 3330, "total_steps": 3906, "loss": 1.3048, "learning_rate": 2.1511831252557048e-06, "epoch": 0.85248, "percentage": 85.25, "elapsed_time": "12:14:23", "remaining_time": "2:07:01"}
3331
+ {"current_steps": 3331, "total_steps": 3906, "loss": 1.3054, "learning_rate": 2.1438565058688623e-06, "epoch": 0.852736, "percentage": 85.28, "elapsed_time": "12:14:36", "remaining_time": "2:06:48"}
3332
+ {"current_steps": 3332, "total_steps": 3906, "loss": 1.3367, "learning_rate": 2.1365416778363325e-06, "epoch": 0.852992, "percentage": 85.3, "elapsed_time": "12:14:49", "remaining_time": "2:06:35"}
3333
+ {"current_steps": 3333, "total_steps": 3906, "loss": 1.3135, "learning_rate": 2.1292386459884804e-06, "epoch": 0.853248, "percentage": 85.33, "elapsed_time": "12:15:02", "remaining_time": "2:06:21"}
3334
+ {"current_steps": 3334, "total_steps": 3906, "loss": 1.3177, "learning_rate": 2.1219474151478823e-06, "epoch": 0.853504, "percentage": 85.36, "elapsed_time": "12:15:15", "remaining_time": "2:06:08"}
3335
+ {"current_steps": 3335, "total_steps": 3906, "loss": 1.2836, "learning_rate": 2.1146679901293267e-06, "epoch": 0.85376, "percentage": 85.38, "elapsed_time": "12:15:28", "remaining_time": "2:05:55"}
3336
+ {"current_steps": 3336, "total_steps": 3906, "loss": 1.3393, "learning_rate": 2.1074003757398055e-06, "epoch": 0.854016, "percentage": 85.41, "elapsed_time": "12:15:42", "remaining_time": "2:05:42"}
3337
+ {"current_steps": 3337, "total_steps": 3906, "loss": 1.2869, "learning_rate": 2.1001445767784978e-06, "epoch": 0.854272, "percentage": 85.43, "elapsed_time": "12:15:55", "remaining_time": "2:05:29"}
3338
+ {"current_steps": 3338, "total_steps": 3906, "loss": 1.3572, "learning_rate": 2.0929005980367957e-06, "epoch": 0.854528, "percentage": 85.46, "elapsed_time": "12:16:08", "remaining_time": "2:05:15"}
3339
+ {"current_steps": 3339, "total_steps": 3906, "loss": 1.2898, "learning_rate": 2.085668444298288e-06, "epoch": 0.854784, "percentage": 85.48, "elapsed_time": "12:16:21", "remaining_time": "2:05:02"}
3340
+ {"current_steps": 3340, "total_steps": 3906, "loss": 1.2957, "learning_rate": 2.078448120338734e-06, "epoch": 0.85504, "percentage": 85.51, "elapsed_time": "12:16:34", "remaining_time": "2:04:49"}
3341
+ {"current_steps": 3341, "total_steps": 3906, "loss": 1.2841, "learning_rate": 2.0712396309261028e-06, "epoch": 0.855296, "percentage": 85.54, "elapsed_time": "12:16:47", "remaining_time": "2:04:36"}
3342
+ {"current_steps": 3342, "total_steps": 3906, "loss": 1.2864, "learning_rate": 2.0640429808205442e-06, "epoch": 0.855552, "percentage": 85.56, "elapsed_time": "12:17:01", "remaining_time": "2:04:22"}
3343
+ {"current_steps": 3343, "total_steps": 3906, "loss": 1.3091, "learning_rate": 2.0568581747743764e-06, "epoch": 0.855808, "percentage": 85.59, "elapsed_time": "12:17:14", "remaining_time": "2:04:09"}
3344
+ {"current_steps": 3344, "total_steps": 3906, "loss": 1.3229, "learning_rate": 2.0496852175321113e-06, "epoch": 0.856064, "percentage": 85.61, "elapsed_time": "12:17:27", "remaining_time": "2:03:56"}
3345
+ {"current_steps": 3345, "total_steps": 3906, "loss": 1.3325, "learning_rate": 2.0425241138304307e-06, "epoch": 0.85632, "percentage": 85.64, "elapsed_time": "12:17:40", "remaining_time": "2:03:43"}
3346
+ {"current_steps": 3346, "total_steps": 3906, "loss": 1.2978, "learning_rate": 2.0353748683981922e-06, "epoch": 0.856576, "percentage": 85.66, "elapsed_time": "12:17:54", "remaining_time": "2:03:29"}
3347
+ {"current_steps": 3347, "total_steps": 3906, "loss": 1.308, "learning_rate": 2.028237485956417e-06, "epoch": 0.856832, "percentage": 85.69, "elapsed_time": "12:18:07", "remaining_time": "2:03:16"}
3348
+ {"current_steps": 3348, "total_steps": 3906, "loss": 1.3455, "learning_rate": 2.0211119712182947e-06, "epoch": 0.857088, "percentage": 85.71, "elapsed_time": "12:18:20", "remaining_time": "2:03:03"}
3349
+ {"current_steps": 3349, "total_steps": 3906, "loss": 1.2977, "learning_rate": 2.0139983288891864e-06, "epoch": 0.857344, "percentage": 85.74, "elapsed_time": "12:18:33", "remaining_time": "2:02:50"}
3350
+ {"current_steps": 3350, "total_steps": 3906, "loss": 1.3096, "learning_rate": 2.006896563666596e-06, "epoch": 0.8576, "percentage": 85.77, "elapsed_time": "12:18:46", "remaining_time": "2:02:36"}
3351
+ {"current_steps": 3351, "total_steps": 3906, "loss": 1.3136, "learning_rate": 1.9998066802402016e-06, "epoch": 0.857856, "percentage": 85.79, "elapsed_time": "12:19:00", "remaining_time": "2:02:23"}
3352
+ {"current_steps": 3352, "total_steps": 3906, "loss": 1.3218, "learning_rate": 1.992728683291818e-06, "epoch": 0.858112, "percentage": 85.82, "elapsed_time": "12:19:13", "remaining_time": "2:02:10"}
3353
+ {"current_steps": 3353, "total_steps": 3906, "loss": 1.3292, "learning_rate": 1.9856625774954287e-06, "epoch": 0.858368, "percentage": 85.84, "elapsed_time": "12:19:26", "remaining_time": "2:01:57"}
3354
+ {"current_steps": 3354, "total_steps": 3906, "loss": 1.3152, "learning_rate": 1.9786083675171542e-06, "epoch": 0.858624, "percentage": 85.87, "elapsed_time": "12:19:39", "remaining_time": "2:01:43"}
3355
+ {"current_steps": 3355, "total_steps": 3906, "loss": 1.3164, "learning_rate": 1.971566058015264e-06, "epoch": 0.85888, "percentage": 85.89, "elapsed_time": "12:19:52", "remaining_time": "2:01:30"}
3356
+ {"current_steps": 3356, "total_steps": 3906, "loss": 1.28, "learning_rate": 1.9645356536401604e-06, "epoch": 0.859136, "percentage": 85.92, "elapsed_time": "12:20:05", "remaining_time": "2:01:17"}
3357
+ {"current_steps": 3357, "total_steps": 3906, "loss": 1.2863, "learning_rate": 1.9575171590343967e-06, "epoch": 0.859392, "percentage": 85.94, "elapsed_time": "12:20:18", "remaining_time": "2:01:04"}
3358
+ {"current_steps": 3358, "total_steps": 3906, "loss": 1.2866, "learning_rate": 1.950510578832652e-06, "epoch": 0.859648, "percentage": 85.97, "elapsed_time": "12:20:32", "remaining_time": "2:00:50"}
3359
+ {"current_steps": 3359, "total_steps": 3906, "loss": 1.3024, "learning_rate": 1.9435159176617404e-06, "epoch": 0.859904, "percentage": 86.0, "elapsed_time": "12:20:45", "remaining_time": "2:00:37"}
3360
+ {"current_steps": 3360, "total_steps": 3906, "loss": 1.329, "learning_rate": 1.936533180140614e-06, "epoch": 0.86016, "percentage": 86.02, "elapsed_time": "12:20:58", "remaining_time": "2:00:24"}
3361
+ {"current_steps": 3361, "total_steps": 3906, "loss": 1.3078, "learning_rate": 1.9295623708803334e-06, "epoch": 0.860416, "percentage": 86.05, "elapsed_time": "12:21:11", "remaining_time": "2:00:11"}
3362
+ {"current_steps": 3362, "total_steps": 3906, "loss": 1.3127, "learning_rate": 1.922603494484101e-06, "epoch": 0.860672, "percentage": 86.07, "elapsed_time": "12:21:24", "remaining_time": "1:59:58"}
3363
+ {"current_steps": 3363, "total_steps": 3906, "loss": 1.2731, "learning_rate": 1.915656555547218e-06, "epoch": 0.860928, "percentage": 86.1, "elapsed_time": "12:21:37", "remaining_time": "1:59:44"}
3364
+ {"current_steps": 3364, "total_steps": 3906, "loss": 1.3159, "learning_rate": 1.908721558657125e-06, "epoch": 0.861184, "percentage": 86.12, "elapsed_time": "12:21:51", "remaining_time": "1:59:31"}
3365
+ {"current_steps": 3365, "total_steps": 3906, "loss": 1.2864, "learning_rate": 1.9017985083933621e-06, "epoch": 0.86144, "percentage": 86.15, "elapsed_time": "12:22:04", "remaining_time": "1:59:18"}
3366
+ {"current_steps": 3366, "total_steps": 3906, "loss": 1.3423, "learning_rate": 1.894887409327586e-06, "epoch": 0.861696, "percentage": 86.18, "elapsed_time": "12:22:17", "remaining_time": "1:59:05"}
3367
+ {"current_steps": 3367, "total_steps": 3906, "loss": 1.2867, "learning_rate": 1.8879882660235638e-06, "epoch": 0.861952, "percentage": 86.2, "elapsed_time": "12:22:30", "remaining_time": "1:58:51"}
3368
+ {"current_steps": 3368, "total_steps": 3906, "loss": 1.2801, "learning_rate": 1.88110108303716e-06, "epoch": 0.862208, "percentage": 86.23, "elapsed_time": "12:22:43", "remaining_time": "1:58:38"}
3369
+ {"current_steps": 3369, "total_steps": 3906, "loss": 1.3283, "learning_rate": 1.8742258649163435e-06, "epoch": 0.862464, "percentage": 86.25, "elapsed_time": "12:22:56", "remaining_time": "1:58:25"}
3370
+ {"current_steps": 3370, "total_steps": 3906, "loss": 1.2954, "learning_rate": 1.867362616201187e-06, "epoch": 0.86272, "percentage": 86.28, "elapsed_time": "12:23:10", "remaining_time": "1:58:12"}
3371
+ {"current_steps": 3371, "total_steps": 3906, "loss": 1.3006, "learning_rate": 1.8605113414238563e-06, "epoch": 0.862976, "percentage": 86.3, "elapsed_time": "12:23:23", "remaining_time": "1:57:58"}
3372
+ {"current_steps": 3372, "total_steps": 3906, "loss": 1.3502, "learning_rate": 1.8536720451086121e-06, "epoch": 0.863232, "percentage": 86.33, "elapsed_time": "12:23:36", "remaining_time": "1:57:45"}
3373
+ {"current_steps": 3373, "total_steps": 3906, "loss": 1.3506, "learning_rate": 1.8468447317717974e-06, "epoch": 0.863488, "percentage": 86.35, "elapsed_time": "12:23:49", "remaining_time": "1:57:32"}
3374
+ {"current_steps": 3374, "total_steps": 3906, "loss": 1.3675, "learning_rate": 1.8400294059218526e-06, "epoch": 0.863744, "percentage": 86.38, "elapsed_time": "12:24:02", "remaining_time": "1:57:19"}
3375
+ {"current_steps": 3375, "total_steps": 3906, "loss": 1.3337, "learning_rate": 1.8332260720592908e-06, "epoch": 0.864, "percentage": 86.41, "elapsed_time": "12:24:15", "remaining_time": "1:57:05"}
3376
+ {"current_steps": 3376, "total_steps": 3906, "loss": 1.296, "learning_rate": 1.8264347346767164e-06, "epoch": 0.864256, "percentage": 86.43, "elapsed_time": "12:24:29", "remaining_time": "1:56:52"}
3377
+ {"current_steps": 3377, "total_steps": 3906, "loss": 1.3464, "learning_rate": 1.8196553982588083e-06, "epoch": 0.864512, "percentage": 86.46, "elapsed_time": "12:24:42", "remaining_time": "1:56:39"}
3378
+ {"current_steps": 3378, "total_steps": 3906, "loss": 1.297, "learning_rate": 1.812888067282319e-06, "epoch": 0.864768, "percentage": 86.48, "elapsed_time": "12:24:55", "remaining_time": "1:56:26"}
3379
+ {"current_steps": 3379, "total_steps": 3906, "loss": 1.3575, "learning_rate": 1.8061327462160804e-06, "epoch": 0.865024, "percentage": 86.51, "elapsed_time": "12:25:08", "remaining_time": "1:56:12"}
3380
+ {"current_steps": 3380, "total_steps": 3906, "loss": 1.3266, "learning_rate": 1.7993894395209776e-06, "epoch": 0.86528, "percentage": 86.53, "elapsed_time": "12:25:21", "remaining_time": "1:55:59"}
3381
+ {"current_steps": 3381, "total_steps": 3906, "loss": 1.2938, "learning_rate": 1.7926581516499774e-06, "epoch": 0.865536, "percentage": 86.56, "elapsed_time": "12:25:34", "remaining_time": "1:55:46"}
3382
+ {"current_steps": 3382, "total_steps": 3906, "loss": 1.2853, "learning_rate": 1.7859388870481064e-06, "epoch": 0.865792, "percentage": 86.58, "elapsed_time": "12:25:48", "remaining_time": "1:55:33"}
3383
+ {"current_steps": 3383, "total_steps": 3906, "loss": 1.3226, "learning_rate": 1.7792316501524487e-06, "epoch": 0.866048, "percentage": 86.61, "elapsed_time": "12:26:01", "remaining_time": "1:55:19"}
3384
+ {"current_steps": 3384, "total_steps": 3906, "loss": 1.3361, "learning_rate": 1.7725364453921434e-06, "epoch": 0.866304, "percentage": 86.64, "elapsed_time": "12:26:14", "remaining_time": "1:55:06"}
3385
+ {"current_steps": 3385, "total_steps": 3906, "loss": 1.3112, "learning_rate": 1.765853277188394e-06, "epoch": 0.86656, "percentage": 86.66, "elapsed_time": "12:26:27", "remaining_time": "1:54:53"}
3386
+ {"current_steps": 3386, "total_steps": 3906, "loss": 1.3416, "learning_rate": 1.7591821499544416e-06, "epoch": 0.866816, "percentage": 86.69, "elapsed_time": "12:26:41", "remaining_time": "1:54:40"}
3387
+ {"current_steps": 3387, "total_steps": 3906, "loss": 1.3418, "learning_rate": 1.7525230680955885e-06, "epoch": 0.867072, "percentage": 86.71, "elapsed_time": "12:26:54", "remaining_time": "1:54:27"}
3388
+ {"current_steps": 3388, "total_steps": 3906, "loss": 1.3066, "learning_rate": 1.7458760360091753e-06, "epoch": 0.867328, "percentage": 86.74, "elapsed_time": "12:27:07", "remaining_time": "1:54:13"}
3389
+ {"current_steps": 3389, "total_steps": 3906, "loss": 1.3342, "learning_rate": 1.739241058084593e-06, "epoch": 0.867584, "percentage": 86.76, "elapsed_time": "12:27:20", "remaining_time": "1:54:00"}
3390
+ {"current_steps": 3390, "total_steps": 3906, "loss": 1.3161, "learning_rate": 1.7326181387032636e-06, "epoch": 0.86784, "percentage": 86.79, "elapsed_time": "12:27:33", "remaining_time": "1:53:47"}
3391
+ {"current_steps": 3391, "total_steps": 3906, "loss": 1.3007, "learning_rate": 1.7260072822386554e-06, "epoch": 0.868096, "percentage": 86.82, "elapsed_time": "12:27:46", "remaining_time": "1:53:34"}
3392
+ {"current_steps": 3392, "total_steps": 3906, "loss": 1.3093, "learning_rate": 1.7194084930562582e-06, "epoch": 0.868352, "percentage": 86.84, "elapsed_time": "12:28:00", "remaining_time": "1:53:20"}
3393
+ {"current_steps": 3393, "total_steps": 3906, "loss": 1.2488, "learning_rate": 1.7128217755136046e-06, "epoch": 0.868608, "percentage": 86.87, "elapsed_time": "12:28:13", "remaining_time": "1:53:07"}
3394
+ {"current_steps": 3394, "total_steps": 3906, "loss": 1.384, "learning_rate": 1.7062471339602548e-06, "epoch": 0.868864, "percentage": 86.89, "elapsed_time": "12:28:26", "remaining_time": "1:52:54"}
3395
+ {"current_steps": 3395, "total_steps": 3906, "loss": 1.3094, "learning_rate": 1.6996845727377898e-06, "epoch": 0.86912, "percentage": 86.92, "elapsed_time": "12:28:39", "remaining_time": "1:52:41"}
3396
+ {"current_steps": 3396, "total_steps": 3906, "loss": 1.3132, "learning_rate": 1.6931340961798138e-06, "epoch": 0.869376, "percentage": 86.94, "elapsed_time": "12:28:52", "remaining_time": "1:52:27"}
3397
+ {"current_steps": 3397, "total_steps": 3906, "loss": 1.3138, "learning_rate": 1.6865957086119554e-06, "epoch": 0.869632, "percentage": 86.97, "elapsed_time": "12:29:05", "remaining_time": "1:52:14"}
3398
+ {"current_steps": 3398, "total_steps": 3906, "loss": 1.3283, "learning_rate": 1.6800694143518526e-06, "epoch": 0.869888, "percentage": 86.99, "elapsed_time": "12:29:19", "remaining_time": "1:52:01"}
3399
+ {"current_steps": 3399, "total_steps": 3906, "loss": 1.3259, "learning_rate": 1.6735552177091642e-06, "epoch": 0.870144, "percentage": 87.02, "elapsed_time": "12:29:32", "remaining_time": "1:51:48"}
3400
+ {"current_steps": 3400, "total_steps": 3906, "loss": 1.2875, "learning_rate": 1.667053122985558e-06, "epoch": 0.8704, "percentage": 87.05, "elapsed_time": "12:29:45", "remaining_time": "1:51:34"}
3401
+ {"current_steps": 3401, "total_steps": 3906, "loss": 1.2975, "learning_rate": 1.660563134474713e-06, "epoch": 0.870656, "percentage": 87.07, "elapsed_time": "12:29:58", "remaining_time": "1:51:21"}
3402
+ {"current_steps": 3402, "total_steps": 3906, "loss": 1.3618, "learning_rate": 1.6540852564623077e-06, "epoch": 0.870912, "percentage": 87.1, "elapsed_time": "12:30:11", "remaining_time": "1:51:08"}
3403
+ {"current_steps": 3403, "total_steps": 3906, "loss": 1.3385, "learning_rate": 1.6476194932260314e-06, "epoch": 0.871168, "percentage": 87.12, "elapsed_time": "12:30:24", "remaining_time": "1:50:55"}
3404
+ {"current_steps": 3404, "total_steps": 3906, "loss": 1.3706, "learning_rate": 1.6411658490355641e-06, "epoch": 0.871424, "percentage": 87.15, "elapsed_time": "12:30:38", "remaining_time": "1:50:41"}
3405
+ {"current_steps": 3405, "total_steps": 3906, "loss": 1.3532, "learning_rate": 1.6347243281525883e-06, "epoch": 0.87168, "percentage": 87.17, "elapsed_time": "12:30:51", "remaining_time": "1:50:28"}
3406
+ {"current_steps": 3406, "total_steps": 3906, "loss": 1.3404, "learning_rate": 1.6282949348307854e-06, "epoch": 0.871936, "percentage": 87.2, "elapsed_time": "12:31:04", "remaining_time": "1:50:15"}
3407
+ {"current_steps": 3407, "total_steps": 3906, "loss": 1.3134, "learning_rate": 1.621877673315817e-06, "epoch": 0.872192, "percentage": 87.22, "elapsed_time": "12:31:17", "remaining_time": "1:50:02"}
3408
+ {"current_steps": 3408, "total_steps": 3906, "loss": 1.3454, "learning_rate": 1.6154725478453426e-06, "epoch": 0.872448, "percentage": 87.25, "elapsed_time": "12:31:30", "remaining_time": "1:49:49"}
3409
+ {"current_steps": 3409, "total_steps": 3906, "loss": 1.2876, "learning_rate": 1.609079562649003e-06, "epoch": 0.872704, "percentage": 87.28, "elapsed_time": "12:31:44", "remaining_time": "1:49:35"}
3410
+ {"current_steps": 3410, "total_steps": 3906, "loss": 1.3055, "learning_rate": 1.6026987219484302e-06, "epoch": 0.87296, "percentage": 87.3, "elapsed_time": "12:31:57", "remaining_time": "1:49:22"}
3411
+ {"current_steps": 3411, "total_steps": 3906, "loss": 1.3029, "learning_rate": 1.5963300299572227e-06, "epoch": 0.873216, "percentage": 87.33, "elapsed_time": "12:32:10", "remaining_time": "1:49:09"}
3412
+ {"current_steps": 3412, "total_steps": 3906, "loss": 1.3374, "learning_rate": 1.5899734908809649e-06, "epoch": 0.873472, "percentage": 87.35, "elapsed_time": "12:32:23", "remaining_time": "1:48:56"}
3413
+ {"current_steps": 3413, "total_steps": 3906, "loss": 1.3551, "learning_rate": 1.5836291089172173e-06, "epoch": 0.873728, "percentage": 87.38, "elapsed_time": "12:32:36", "remaining_time": "1:48:42"}
3414
+ {"current_steps": 3414, "total_steps": 3906, "loss": 1.335, "learning_rate": 1.5772968882555107e-06, "epoch": 0.873984, "percentage": 87.4, "elapsed_time": "12:32:50", "remaining_time": "1:48:29"}
3415
+ {"current_steps": 3415, "total_steps": 3906, "loss": 1.3177, "learning_rate": 1.5709768330773424e-06, "epoch": 0.87424, "percentage": 87.43, "elapsed_time": "12:33:03", "remaining_time": "1:48:16"}
3416
+ {"current_steps": 3416, "total_steps": 3906, "loss": 1.3128, "learning_rate": 1.5646689475561848e-06, "epoch": 0.874496, "percentage": 87.46, "elapsed_time": "12:33:16", "remaining_time": "1:48:03"}
3417
+ {"current_steps": 3417, "total_steps": 3906, "loss": 1.3171, "learning_rate": 1.55837323585746e-06, "epoch": 0.874752, "percentage": 87.48, "elapsed_time": "12:33:29", "remaining_time": "1:47:49"}
3418
+ {"current_steps": 3418, "total_steps": 3906, "loss": 1.3556, "learning_rate": 1.5520897021385638e-06, "epoch": 0.875008, "percentage": 87.51, "elapsed_time": "12:33:42", "remaining_time": "1:47:36"}
3419
+ {"current_steps": 3419, "total_steps": 3906, "loss": 1.3049, "learning_rate": 1.5458183505488421e-06, "epoch": 0.875264, "percentage": 87.53, "elapsed_time": "12:33:55", "remaining_time": "1:47:23"}
3420
+ {"current_steps": 3420, "total_steps": 3906, "loss": 1.3256, "learning_rate": 1.5395591852295998e-06, "epoch": 0.87552, "percentage": 87.56, "elapsed_time": "12:34:09", "remaining_time": "1:47:10"}
3421
+ {"current_steps": 3421, "total_steps": 3906, "loss": 1.3341, "learning_rate": 1.533312210314095e-06, "epoch": 0.875776, "percentage": 87.58, "elapsed_time": "12:34:22", "remaining_time": "1:46:56"}
3422
+ {"current_steps": 3422, "total_steps": 3906, "loss": 1.306, "learning_rate": 1.527077429927537e-06, "epoch": 0.876032, "percentage": 87.61, "elapsed_time": "12:34:35", "remaining_time": "1:46:43"}
3423
+ {"current_steps": 3423, "total_steps": 3906, "loss": 1.2815, "learning_rate": 1.5208548481870766e-06, "epoch": 0.876288, "percentage": 87.63, "elapsed_time": "12:34:48", "remaining_time": "1:46:30"}
3424
+ {"current_steps": 3424, "total_steps": 3906, "loss": 1.3462, "learning_rate": 1.514644469201816e-06, "epoch": 0.876544, "percentage": 87.66, "elapsed_time": "12:35:01", "remaining_time": "1:46:17"}
3425
+ {"current_steps": 3425, "total_steps": 3906, "loss": 1.2847, "learning_rate": 1.5084462970727942e-06, "epoch": 0.8768, "percentage": 87.69, "elapsed_time": "12:35:15", "remaining_time": "1:46:03"}
3426
+ {"current_steps": 3426, "total_steps": 3906, "loss": 1.3965, "learning_rate": 1.5022603358929955e-06, "epoch": 0.877056, "percentage": 87.71, "elapsed_time": "12:35:28", "remaining_time": "1:45:50"}
3427
+ {"current_steps": 3427, "total_steps": 3906, "loss": 1.3496, "learning_rate": 1.496086589747332e-06, "epoch": 0.877312, "percentage": 87.74, "elapsed_time": "12:35:41", "remaining_time": "1:45:37"}
3428
+ {"current_steps": 3428, "total_steps": 3906, "loss": 1.2917, "learning_rate": 1.4899250627126581e-06, "epoch": 0.877568, "percentage": 87.76, "elapsed_time": "12:35:54", "remaining_time": "1:45:24"}
3429
+ {"current_steps": 3429, "total_steps": 3906, "loss": 1.2921, "learning_rate": 1.4837757588577551e-06, "epoch": 0.877824, "percentage": 87.79, "elapsed_time": "12:36:07", "remaining_time": "1:45:11"}
3430
+ {"current_steps": 3430, "total_steps": 3906, "loss": 1.3583, "learning_rate": 1.4776386822433276e-06, "epoch": 0.87808, "percentage": 87.81, "elapsed_time": "12:36:20", "remaining_time": "1:44:57"}
3431
+ {"current_steps": 3431, "total_steps": 3906, "loss": 1.3745, "learning_rate": 1.4715138369220161e-06, "epoch": 0.878336, "percentage": 87.84, "elapsed_time": "12:36:34", "remaining_time": "1:44:44"}
3432
+ {"current_steps": 3432, "total_steps": 3906, "loss": 1.3412, "learning_rate": 1.4654012269383765e-06, "epoch": 0.878592, "percentage": 87.86, "elapsed_time": "12:36:47", "remaining_time": "1:44:31"}
3433
+ {"current_steps": 3433, "total_steps": 3906, "loss": 1.3444, "learning_rate": 1.4593008563288913e-06, "epoch": 0.878848, "percentage": 87.89, "elapsed_time": "12:37:00", "remaining_time": "1:44:18"}
3434
+ {"current_steps": 3434, "total_steps": 3906, "loss": 1.301, "learning_rate": 1.45321272912196e-06, "epoch": 0.879104, "percentage": 87.92, "elapsed_time": "12:37:13", "remaining_time": "1:44:04"}
3435
+ {"current_steps": 3435, "total_steps": 3906, "loss": 1.3511, "learning_rate": 1.4471368493378847e-06, "epoch": 0.87936, "percentage": 87.94, "elapsed_time": "12:37:26", "remaining_time": "1:43:51"}
3436
+ {"current_steps": 3436, "total_steps": 3906, "loss": 1.3372, "learning_rate": 1.4410732209888977e-06, "epoch": 0.879616, "percentage": 87.97, "elapsed_time": "12:37:40", "remaining_time": "1:43:38"}
3437
+ {"current_steps": 3437, "total_steps": 3906, "loss": 1.316, "learning_rate": 1.4350218480791278e-06, "epoch": 0.879872, "percentage": 87.99, "elapsed_time": "12:37:53", "remaining_time": "1:43:25"}
3438
+ {"current_steps": 3438, "total_steps": 3906, "loss": 1.3339, "learning_rate": 1.4289827346046204e-06, "epoch": 0.880128, "percentage": 88.02, "elapsed_time": "12:38:06", "remaining_time": "1:43:11"}
3439
+ {"current_steps": 3439, "total_steps": 3906, "loss": 1.3223, "learning_rate": 1.422955884553321e-06, "epoch": 0.880384, "percentage": 88.04, "elapsed_time": "12:38:19", "remaining_time": "1:42:58"}
3440
+ {"current_steps": 3440, "total_steps": 3906, "loss": 1.3035, "learning_rate": 1.4169413019050726e-06, "epoch": 0.88064, "percentage": 88.07, "elapsed_time": "12:38:32", "remaining_time": "1:42:45"}
3441
+ {"current_steps": 3441, "total_steps": 3906, "loss": 1.3314, "learning_rate": 1.4109389906316273e-06, "epoch": 0.880896, "percentage": 88.1, "elapsed_time": "12:38:45", "remaining_time": "1:42:32"}
3442
+ {"current_steps": 3442, "total_steps": 3906, "loss": 1.3654, "learning_rate": 1.404948954696621e-06, "epoch": 0.881152, "percentage": 88.12, "elapsed_time": "12:38:59", "remaining_time": "1:42:18"}
3443
+ {"current_steps": 3443, "total_steps": 3906, "loss": 1.3552, "learning_rate": 1.3989711980555965e-06, "epoch": 0.881408, "percentage": 88.15, "elapsed_time": "12:39:12", "remaining_time": "1:42:05"}
3444
+ {"current_steps": 3444, "total_steps": 3906, "loss": 1.302, "learning_rate": 1.3930057246559782e-06, "epoch": 0.881664, "percentage": 88.17, "elapsed_time": "12:39:25", "remaining_time": "1:41:52"}
3445
+ {"current_steps": 3445, "total_steps": 3906, "loss": 1.3425, "learning_rate": 1.387052538437086e-06, "epoch": 0.88192, "percentage": 88.2, "elapsed_time": "12:39:39", "remaining_time": "1:41:39"}
3446
+ {"current_steps": 3446, "total_steps": 3906, "loss": 1.3145, "learning_rate": 1.3811116433301264e-06, "epoch": 0.882176, "percentage": 88.22, "elapsed_time": "12:39:52", "remaining_time": "1:41:26"}
3447
+ {"current_steps": 3447, "total_steps": 3906, "loss": 1.3132, "learning_rate": 1.3751830432581792e-06, "epoch": 0.882432, "percentage": 88.25, "elapsed_time": "12:40:05", "remaining_time": "1:41:12"}
3448
+ {"current_steps": 3448, "total_steps": 3906, "loss": 1.2871, "learning_rate": 1.3692667421362127e-06, "epoch": 0.882688, "percentage": 88.27, "elapsed_time": "12:40:18", "remaining_time": "1:40:59"}
3449
+ {"current_steps": 3449, "total_steps": 3906, "loss": 1.3428, "learning_rate": 1.3633627438710772e-06, "epoch": 0.882944, "percentage": 88.3, "elapsed_time": "12:40:31", "remaining_time": "1:40:46"}
3450
+ {"current_steps": 3450, "total_steps": 3906, "loss": 1.3509, "learning_rate": 1.357471052361492e-06, "epoch": 0.8832, "percentage": 88.33, "elapsed_time": "12:40:44", "remaining_time": "1:40:33"}
3451
+ {"current_steps": 3451, "total_steps": 3906, "loss": 1.3272, "learning_rate": 1.3515916714980538e-06, "epoch": 0.883456, "percentage": 88.35, "elapsed_time": "12:40:57", "remaining_time": "1:40:19"}
3452
+ {"current_steps": 3452, "total_steps": 3906, "loss": 1.3133, "learning_rate": 1.3457246051632278e-06, "epoch": 0.883712, "percentage": 88.38, "elapsed_time": "12:41:11", "remaining_time": "1:40:06"}
3453
+ {"current_steps": 3453, "total_steps": 3906, "loss": 1.3008, "learning_rate": 1.339869857231344e-06, "epoch": 0.883968, "percentage": 88.4, "elapsed_time": "12:41:24", "remaining_time": "1:39:53"}
3454
+ {"current_steps": 3454, "total_steps": 3906, "loss": 1.3367, "learning_rate": 1.3340274315686053e-06, "epoch": 0.884224, "percentage": 88.43, "elapsed_time": "12:41:37", "remaining_time": "1:39:40"}
3455
+ {"current_steps": 3455, "total_steps": 3906, "loss": 1.296, "learning_rate": 1.32819733203307e-06, "epoch": 0.88448, "percentage": 88.45, "elapsed_time": "12:41:50", "remaining_time": "1:39:26"}
3456
+ {"current_steps": 3456, "total_steps": 3906, "loss": 1.3284, "learning_rate": 1.322379562474665e-06, "epoch": 0.884736, "percentage": 88.48, "elapsed_time": "12:42:03", "remaining_time": "1:39:13"}
3457
+ {"current_steps": 3457, "total_steps": 3906, "loss": 1.3454, "learning_rate": 1.3165741267351706e-06, "epoch": 0.884992, "percentage": 88.5, "elapsed_time": "12:42:17", "remaining_time": "1:39:00"}
3458
+ {"current_steps": 3458, "total_steps": 3906, "loss": 1.3216, "learning_rate": 1.3107810286482225e-06, "epoch": 0.885248, "percentage": 88.53, "elapsed_time": "12:42:30", "remaining_time": "1:38:47"}
3459
+ {"current_steps": 3459, "total_steps": 3906, "loss": 1.3466, "learning_rate": 1.3050002720393052e-06, "epoch": 0.885504, "percentage": 88.56, "elapsed_time": "12:42:43", "remaining_time": "1:38:33"}
3460
+ {"current_steps": 3460, "total_steps": 3906, "loss": 1.303, "learning_rate": 1.299231860725758e-06, "epoch": 0.88576, "percentage": 88.58, "elapsed_time": "12:42:56", "remaining_time": "1:38:20"}
3461
+ {"current_steps": 3461, "total_steps": 3906, "loss": 1.3329, "learning_rate": 1.2934757985167723e-06, "epoch": 0.886016, "percentage": 88.61, "elapsed_time": "12:43:09", "remaining_time": "1:38:07"}
3462
+ {"current_steps": 3462, "total_steps": 3906, "loss": 1.3228, "learning_rate": 1.2877320892133782e-06, "epoch": 0.886272, "percentage": 88.63, "elapsed_time": "12:43:22", "remaining_time": "1:37:54"}
3463
+ {"current_steps": 3463, "total_steps": 3906, "loss": 1.3978, "learning_rate": 1.2820007366084486e-06, "epoch": 0.886528, "percentage": 88.66, "elapsed_time": "12:43:35", "remaining_time": "1:37:40"}
3464
+ {"current_steps": 3464, "total_steps": 3906, "loss": 1.3392, "learning_rate": 1.2762817444867005e-06, "epoch": 0.886784, "percentage": 88.68, "elapsed_time": "12:43:49", "remaining_time": "1:37:27"}
3465
+ {"current_steps": 3465, "total_steps": 3906, "loss": 1.3441, "learning_rate": 1.2705751166246816e-06, "epoch": 0.88704, "percentage": 88.71, "elapsed_time": "12:44:02", "remaining_time": "1:37:14"}
3466
+ {"current_steps": 3466, "total_steps": 3906, "loss": 1.2929, "learning_rate": 1.2648808567907823e-06, "epoch": 0.887296, "percentage": 88.74, "elapsed_time": "12:44:15", "remaining_time": "1:37:01"}
3467
+ {"current_steps": 3467, "total_steps": 3906, "loss": 1.3417, "learning_rate": 1.2591989687452232e-06, "epoch": 0.887552, "percentage": 88.76, "elapsed_time": "12:44:28", "remaining_time": "1:36:47"}
3468
+ {"current_steps": 3468, "total_steps": 3906, "loss": 1.3234, "learning_rate": 1.2535294562400547e-06, "epoch": 0.887808, "percentage": 88.79, "elapsed_time": "12:44:41", "remaining_time": "1:36:34"}
3469
+ {"current_steps": 3469, "total_steps": 3906, "loss": 1.2644, "learning_rate": 1.247872323019157e-06, "epoch": 0.888064, "percentage": 88.81, "elapsed_time": "12:44:54", "remaining_time": "1:36:21"}
3470
+ {"current_steps": 3470, "total_steps": 3906, "loss": 1.3299, "learning_rate": 1.2422275728182309e-06, "epoch": 0.88832, "percentage": 88.84, "elapsed_time": "12:45:08", "remaining_time": "1:36:08"}
3471
+ {"current_steps": 3471, "total_steps": 3906, "loss": 1.3339, "learning_rate": 1.2365952093648082e-06, "epoch": 0.888576, "percentage": 88.86, "elapsed_time": "12:45:21", "remaining_time": "1:35:55"}
3472
+ {"current_steps": 3472, "total_steps": 3906, "loss": 1.324, "learning_rate": 1.2309752363782291e-06, "epoch": 0.888832, "percentage": 88.89, "elapsed_time": "12:45:34", "remaining_time": "1:35:41"}
3473
+ {"current_steps": 3473, "total_steps": 3906, "loss": 1.3354, "learning_rate": 1.2253676575696627e-06, "epoch": 0.889088, "percentage": 88.91, "elapsed_time": "12:45:47", "remaining_time": "1:35:28"}
3474
+ {"current_steps": 3474, "total_steps": 3906, "loss": 1.2935, "learning_rate": 1.2197724766420894e-06, "epoch": 0.889344, "percentage": 88.94, "elapsed_time": "12:46:00", "remaining_time": "1:35:15"}
3475
+ {"current_steps": 3475, "total_steps": 3906, "loss": 1.3192, "learning_rate": 1.2141896972903e-06, "epoch": 0.8896, "percentage": 88.97, "elapsed_time": "12:46:13", "remaining_time": "1:35:02"}
3476
+ {"current_steps": 3476, "total_steps": 3906, "loss": 1.344, "learning_rate": 1.2086193232008991e-06, "epoch": 0.889856, "percentage": 88.99, "elapsed_time": "12:46:27", "remaining_time": "1:34:48"}
3477
+ {"current_steps": 3477, "total_steps": 3906, "loss": 1.3337, "learning_rate": 1.2030613580523021e-06, "epoch": 0.890112, "percentage": 89.02, "elapsed_time": "12:46:40", "remaining_time": "1:34:35"}
3478
+ {"current_steps": 3478, "total_steps": 3906, "loss": 1.3511, "learning_rate": 1.1975158055147218e-06, "epoch": 0.890368, "percentage": 89.04, "elapsed_time": "12:46:53", "remaining_time": "1:34:22"}
3479
+ {"current_steps": 3479, "total_steps": 3906, "loss": 1.3188, "learning_rate": 1.1919826692501823e-06, "epoch": 0.890624, "percentage": 89.07, "elapsed_time": "12:47:06", "remaining_time": "1:34:09"}
3480
+ {"current_steps": 3480, "total_steps": 3906, "loss": 1.3161, "learning_rate": 1.1864619529125055e-06, "epoch": 0.89088, "percentage": 89.09, "elapsed_time": "12:47:19", "remaining_time": "1:33:55"}
3481
+ {"current_steps": 3481, "total_steps": 3906, "loss": 1.3436, "learning_rate": 1.1809536601473103e-06, "epoch": 0.891136, "percentage": 89.12, "elapsed_time": "12:47:32", "remaining_time": "1:33:42"}
3482
+ {"current_steps": 3482, "total_steps": 3906, "loss": 1.3279, "learning_rate": 1.1754577945920142e-06, "epoch": 0.891392, "percentage": 89.14, "elapsed_time": "12:47:46", "remaining_time": "1:33:29"}
3483
+ {"current_steps": 3483, "total_steps": 3906, "loss": 1.3329, "learning_rate": 1.1699743598758317e-06, "epoch": 0.891648, "percentage": 89.17, "elapsed_time": "12:47:59", "remaining_time": "1:33:16"}
3484
+ {"current_steps": 3484, "total_steps": 3906, "loss": 1.3232, "learning_rate": 1.1645033596197575e-06, "epoch": 0.891904, "percentage": 89.2, "elapsed_time": "12:48:12", "remaining_time": "1:33:02"}
3485
+ {"current_steps": 3485, "total_steps": 3906, "loss": 1.3141, "learning_rate": 1.1590447974365881e-06, "epoch": 0.89216, "percentage": 89.22, "elapsed_time": "12:48:25", "remaining_time": "1:32:49"}
3486
+ {"current_steps": 3486, "total_steps": 3906, "loss": 1.3232, "learning_rate": 1.1535986769308915e-06, "epoch": 0.892416, "percentage": 89.25, "elapsed_time": "12:48:38", "remaining_time": "1:32:36"}
3487
+ {"current_steps": 3487, "total_steps": 3906, "loss": 1.3123, "learning_rate": 1.1481650016990375e-06, "epoch": 0.892672, "percentage": 89.27, "elapsed_time": "12:48:52", "remaining_time": "1:32:23"}
3488
+ {"current_steps": 3488, "total_steps": 3906, "loss": 1.3307, "learning_rate": 1.1427437753291627e-06, "epoch": 0.892928, "percentage": 89.3, "elapsed_time": "12:49:05", "remaining_time": "1:32:10"}
3489
+ {"current_steps": 3489, "total_steps": 3906, "loss": 1.2972, "learning_rate": 1.137335001401194e-06, "epoch": 0.893184, "percentage": 89.32, "elapsed_time": "12:49:18", "remaining_time": "1:31:56"}
3490
+ {"current_steps": 3490, "total_steps": 3906, "loss": 1.2802, "learning_rate": 1.1319386834868262e-06, "epoch": 0.89344, "percentage": 89.35, "elapsed_time": "12:49:31", "remaining_time": "1:31:43"}
3491
+ {"current_steps": 3491, "total_steps": 3906, "loss": 1.299, "learning_rate": 1.126554825149535e-06, "epoch": 0.893696, "percentage": 89.38, "elapsed_time": "12:49:44", "remaining_time": "1:31:30"}
3492
+ {"current_steps": 3492, "total_steps": 3906, "loss": 1.2909, "learning_rate": 1.1211834299445678e-06, "epoch": 0.893952, "percentage": 89.4, "elapsed_time": "12:49:57", "remaining_time": "1:31:17"}
3493
+ {"current_steps": 3493, "total_steps": 3906, "loss": 1.3214, "learning_rate": 1.1158245014189362e-06, "epoch": 0.894208, "percentage": 89.43, "elapsed_time": "12:50:11", "remaining_time": "1:31:03"}
3494
+ {"current_steps": 3494, "total_steps": 3906, "loss": 1.3228, "learning_rate": 1.110478043111427e-06, "epoch": 0.894464, "percentage": 89.45, "elapsed_time": "12:50:24", "remaining_time": "1:30:50"}
3495
+ {"current_steps": 3495, "total_steps": 3906, "loss": 1.2946, "learning_rate": 1.1051440585525896e-06, "epoch": 0.89472, "percentage": 89.48, "elapsed_time": "12:50:37", "remaining_time": "1:30:37"}
3496
+ {"current_steps": 3496, "total_steps": 3906, "loss": 1.3427, "learning_rate": 1.0998225512647332e-06, "epoch": 0.894976, "percentage": 89.5, "elapsed_time": "12:50:50", "remaining_time": "1:30:24"}
3497
+ {"current_steps": 3497, "total_steps": 3906, "loss": 1.3407, "learning_rate": 1.0945135247619332e-06, "epoch": 0.895232, "percentage": 89.53, "elapsed_time": "12:51:03", "remaining_time": "1:30:10"}
3498
+ {"current_steps": 3498, "total_steps": 3906, "loss": 1.2895, "learning_rate": 1.0892169825500144e-06, "epoch": 0.895488, "percentage": 89.55, "elapsed_time": "12:51:17", "remaining_time": "1:29:57"}
3499
+ {"current_steps": 3499, "total_steps": 3906, "loss": 1.3144, "learning_rate": 1.0839329281265676e-06, "epoch": 0.895744, "percentage": 89.58, "elapsed_time": "12:51:30", "remaining_time": "1:29:44"}
3500
+ {"current_steps": 3500, "total_steps": 3906, "loss": 1.323, "learning_rate": 1.0786613649809308e-06, "epoch": 0.896, "percentage": 89.61, "elapsed_time": "12:51:43", "remaining_time": "1:29:31"}
3501
+ {"current_steps": 3501, "total_steps": 3906, "loss": 1.3436, "learning_rate": 1.0734022965942015e-06, "epoch": 0.896256, "percentage": 89.63, "elapsed_time": "12:51:56", "remaining_time": "1:29:17"}
3502
+ {"current_steps": 3502, "total_steps": 3906, "loss": 1.3459, "learning_rate": 1.0681557264392106e-06, "epoch": 0.896512, "percentage": 89.66, "elapsed_time": "12:52:09", "remaining_time": "1:29:04"}
3503
+ {"current_steps": 3503, "total_steps": 3906, "loss": 1.3243, "learning_rate": 1.0629216579805513e-06, "epoch": 0.896768, "percentage": 89.68, "elapsed_time": "12:52:22", "remaining_time": "1:28:51"}
3504
+ {"current_steps": 3504, "total_steps": 3906, "loss": 1.3263, "learning_rate": 1.0577000946745541e-06, "epoch": 0.897024, "percentage": 89.71, "elapsed_time": "12:52:36", "remaining_time": "1:28:38"}
3505
+ {"current_steps": 3505, "total_steps": 3906, "loss": 1.3179, "learning_rate": 1.0524910399692923e-06, "epoch": 0.89728, "percentage": 89.73, "elapsed_time": "12:52:49", "remaining_time": "1:28:25"}
3506
+ {"current_steps": 3506, "total_steps": 3906, "loss": 1.3421, "learning_rate": 1.0472944973045807e-06, "epoch": 0.897536, "percentage": 89.76, "elapsed_time": "12:53:02", "remaining_time": "1:28:11"}
3507
+ {"current_steps": 3507, "total_steps": 3906, "loss": 1.2885, "learning_rate": 1.0421104701119744e-06, "epoch": 0.897792, "percentage": 89.78, "elapsed_time": "12:53:15", "remaining_time": "1:27:58"}
3508
+ {"current_steps": 3508, "total_steps": 3906, "loss": 1.3387, "learning_rate": 1.0369389618147552e-06, "epoch": 0.898048, "percentage": 89.81, "elapsed_time": "12:53:28", "remaining_time": "1:27:45"}
3509
+ {"current_steps": 3509, "total_steps": 3906, "loss": 1.3073, "learning_rate": 1.0317799758279424e-06, "epoch": 0.898304, "percentage": 89.84, "elapsed_time": "12:53:42", "remaining_time": "1:27:32"}
3510
+ {"current_steps": 3510, "total_steps": 3906, "loss": 1.3183, "learning_rate": 1.0266335155582885e-06, "epoch": 0.89856, "percentage": 89.86, "elapsed_time": "12:53:55", "remaining_time": "1:27:18"}
3511
+ {"current_steps": 3511, "total_steps": 3906, "loss": 1.3473, "learning_rate": 1.021499584404273e-06, "epoch": 0.898816, "percentage": 89.89, "elapsed_time": "12:54:08", "remaining_time": "1:27:05"}
3512
+ {"current_steps": 3512, "total_steps": 3906, "loss": 1.3141, "learning_rate": 1.0163781857561017e-06, "epoch": 0.899072, "percentage": 89.91, "elapsed_time": "12:54:21", "remaining_time": "1:26:52"}
3513
+ {"current_steps": 3513, "total_steps": 3906, "loss": 1.3106, "learning_rate": 1.0112693229957093e-06, "epoch": 0.899328, "percentage": 89.94, "elapsed_time": "12:54:34", "remaining_time": "1:26:39"}
3514
+ {"current_steps": 3514, "total_steps": 3906, "loss": 1.3492, "learning_rate": 1.0061729994967374e-06, "epoch": 0.899584, "percentage": 89.96, "elapsed_time": "12:54:48", "remaining_time": "1:26:25"}
3515
+ {"current_steps": 3515, "total_steps": 3906, "loss": 1.3007, "learning_rate": 1.0010892186245647e-06, "epoch": 0.89984, "percentage": 89.99, "elapsed_time": "12:55:01", "remaining_time": "1:26:12"}
3516
+ {"current_steps": 3516, "total_steps": 3906, "loss": 1.3546, "learning_rate": 9.960179837362793e-07, "epoch": 0.900096, "percentage": 90.02, "elapsed_time": "12:55:14", "remaining_time": "1:25:59"}
3517
+ {"current_steps": 3517, "total_steps": 3906, "loss": 1.3116, "learning_rate": 9.90959298180685e-07, "epoch": 0.900352, "percentage": 90.04, "elapsed_time": "12:55:27", "remaining_time": "1:25:46"}
3518
+ {"current_steps": 3518, "total_steps": 3906, "loss": 1.2684, "learning_rate": 9.859131652982979e-07, "epoch": 0.900608, "percentage": 90.07, "elapsed_time": "12:55:40", "remaining_time": "1:25:32"}
3519
+ {"current_steps": 3519, "total_steps": 3906, "loss": 1.3085, "learning_rate": 9.808795884213462e-07, "epoch": 0.900864, "percentage": 90.09, "elapsed_time": "12:55:54", "remaining_time": "1:25:19"}
3520
+ {"current_steps": 3520, "total_steps": 3906, "loss": 1.3594, "learning_rate": 9.758585708737711e-07, "epoch": 0.90112, "percentage": 90.12, "elapsed_time": "12:56:07", "remaining_time": "1:25:06"}
3521
+ {"current_steps": 3521, "total_steps": 3906, "loss": 1.3033, "learning_rate": 9.70850115971207e-07, "epoch": 0.901376, "percentage": 90.14, "elapsed_time": "12:56:20", "remaining_time": "1:24:53"}
3522
+ {"current_steps": 3522, "total_steps": 3906, "loss": 1.3096, "learning_rate": 9.658542270210058e-07, "epoch": 0.901632, "percentage": 90.17, "elapsed_time": "12:56:33", "remaining_time": "1:24:40"}
3523
+ {"current_steps": 3523, "total_steps": 3906, "loss": 1.3029, "learning_rate": 9.608709073222156e-07, "epoch": 0.901888, "percentage": 90.19, "elapsed_time": "12:56:46", "remaining_time": "1:24:26"}
3524
+ {"current_steps": 3524, "total_steps": 3906, "loss": 1.348, "learning_rate": 9.55900160165586e-07, "epoch": 0.902144, "percentage": 90.22, "elapsed_time": "12:56:59", "remaining_time": "1:24:13"}
3525
+ {"current_steps": 3525, "total_steps": 3906, "loss": 1.3416, "learning_rate": 9.509419888335692e-07, "epoch": 0.9024, "percentage": 90.25, "elapsed_time": "12:57:13", "remaining_time": "1:24:00"}
3526
+ {"current_steps": 3526, "total_steps": 3906, "loss": 1.3434, "learning_rate": 9.459963966002972e-07, "epoch": 0.902656, "percentage": 90.27, "elapsed_time": "12:57:26", "remaining_time": "1:23:47"}
3527
+ {"current_steps": 3527, "total_steps": 3906, "loss": 1.3227, "learning_rate": 9.410633867316132e-07, "epoch": 0.902912, "percentage": 90.3, "elapsed_time": "12:57:39", "remaining_time": "1:23:33"}
3528
+ {"current_steps": 3528, "total_steps": 3906, "loss": 1.3169, "learning_rate": 9.361429624850404e-07, "epoch": 0.903168, "percentage": 90.32, "elapsed_time": "12:57:52", "remaining_time": "1:23:20"}
3529
+ {"current_steps": 3529, "total_steps": 3906, "loss": 1.3172, "learning_rate": 9.312351271097953e-07, "epoch": 0.903424, "percentage": 90.35, "elapsed_time": "12:58:05", "remaining_time": "1:23:07"}
3530
+ {"current_steps": 3530, "total_steps": 3906, "loss": 1.328, "learning_rate": 9.263398838467852e-07, "epoch": 0.90368, "percentage": 90.37, "elapsed_time": "12:58:19", "remaining_time": "1:22:54"}
3531
+ {"current_steps": 3531, "total_steps": 3906, "loss": 1.3076, "learning_rate": 9.214572359285934e-07, "epoch": 0.903936, "percentage": 90.4, "elapsed_time": "12:58:32", "remaining_time": "1:22:40"}
3532
+ {"current_steps": 3532, "total_steps": 3906, "loss": 1.2807, "learning_rate": 9.165871865794895e-07, "epoch": 0.904192, "percentage": 90.42, "elapsed_time": "12:58:45", "remaining_time": "1:22:27"}
3533
+ {"current_steps": 3533, "total_steps": 3906, "loss": 1.3179, "learning_rate": 9.117297390154234e-07, "epoch": 0.904448, "percentage": 90.45, "elapsed_time": "12:58:58", "remaining_time": "1:22:14"}
3534
+ {"current_steps": 3534, "total_steps": 3906, "loss": 1.347, "learning_rate": 9.068848964440291e-07, "epoch": 0.904704, "percentage": 90.48, "elapsed_time": "12:59:11", "remaining_time": "1:22:01"}
3535
+ {"current_steps": 3535, "total_steps": 3906, "loss": 1.3379, "learning_rate": 9.020526620646075e-07, "epoch": 0.90496, "percentage": 90.5, "elapsed_time": "12:59:25", "remaining_time": "1:21:48"}
3536
+ {"current_steps": 3536, "total_steps": 3906, "loss": 1.3148, "learning_rate": 8.972330390681394e-07, "epoch": 0.905216, "percentage": 90.53, "elapsed_time": "12:59:38", "remaining_time": "1:21:34"}
3537
+ {"current_steps": 3537, "total_steps": 3906, "loss": 1.3208, "learning_rate": 8.924260306372746e-07, "epoch": 0.905472, "percentage": 90.55, "elapsed_time": "12:59:51", "remaining_time": "1:21:21"}
3538
+ {"current_steps": 3538, "total_steps": 3906, "loss": 1.3589, "learning_rate": 8.876316399463425e-07, "epoch": 0.905728, "percentage": 90.58, "elapsed_time": "13:00:04", "remaining_time": "1:21:08"}
3539
+ {"current_steps": 3539, "total_steps": 3906, "loss": 1.3442, "learning_rate": 8.82849870161322e-07, "epoch": 0.905984, "percentage": 90.6, "elapsed_time": "13:00:17", "remaining_time": "1:20:55"}
3540
+ {"current_steps": 3540, "total_steps": 3906, "loss": 1.3979, "learning_rate": 8.780807244398737e-07, "epoch": 0.90624, "percentage": 90.63, "elapsed_time": "13:00:30", "remaining_time": "1:20:41"}
3541
+ {"current_steps": 3541, "total_steps": 3906, "loss": 1.3436, "learning_rate": 8.733242059313163e-07, "epoch": 0.906496, "percentage": 90.66, "elapsed_time": "13:00:44", "remaining_time": "1:20:28"}
3542
+ {"current_steps": 3542, "total_steps": 3906, "loss": 1.3387, "learning_rate": 8.685803177766283e-07, "epoch": 0.906752, "percentage": 90.68, "elapsed_time": "13:00:57", "remaining_time": "1:20:15"}
3543
+ {"current_steps": 3543, "total_steps": 3906, "loss": 1.3332, "learning_rate": 8.638490631084484e-07, "epoch": 0.907008, "percentage": 90.71, "elapsed_time": "13:01:10", "remaining_time": "1:20:02"}
3544
+ {"current_steps": 3544, "total_steps": 3906, "loss": 1.3046, "learning_rate": 8.591304450510795e-07, "epoch": 0.907264, "percentage": 90.73, "elapsed_time": "13:01:23", "remaining_time": "1:19:48"}
3545
+ {"current_steps": 3545, "total_steps": 3906, "loss": 1.3253, "learning_rate": 8.544244667204671e-07, "epoch": 0.90752, "percentage": 90.76, "elapsed_time": "13:01:36", "remaining_time": "1:19:35"}
3546
+ {"current_steps": 3546, "total_steps": 3906, "loss": 1.2953, "learning_rate": 8.497311312242207e-07, "epoch": 0.907776, "percentage": 90.78, "elapsed_time": "13:01:50", "remaining_time": "1:19:22"}
3547
+ {"current_steps": 3547, "total_steps": 3906, "loss": 1.3303, "learning_rate": 8.45050441661599e-07, "epoch": 0.908032, "percentage": 90.81, "elapsed_time": "13:02:03", "remaining_time": "1:19:09"}
3548
+ {"current_steps": 3548, "total_steps": 3906, "loss": 1.3261, "learning_rate": 8.403824011235051e-07, "epoch": 0.908288, "percentage": 90.83, "elapsed_time": "13:02:16", "remaining_time": "1:18:55"}
3549
+ {"current_steps": 3549, "total_steps": 3906, "loss": 1.2923, "learning_rate": 8.357270126924932e-07, "epoch": 0.908544, "percentage": 90.86, "elapsed_time": "13:02:29", "remaining_time": "1:18:42"}
3550
+ {"current_steps": 3550, "total_steps": 3906, "loss": 1.3631, "learning_rate": 8.310842794427665e-07, "epoch": 0.9088, "percentage": 90.89, "elapsed_time": "13:02:42", "remaining_time": "1:18:29"}
3551
+ {"current_steps": 3551, "total_steps": 3906, "loss": 1.3317, "learning_rate": 8.264542044401614e-07, "epoch": 0.909056, "percentage": 90.91, "elapsed_time": "13:02:55", "remaining_time": "1:18:16"}
3552
+ {"current_steps": 3552, "total_steps": 3906, "loss": 1.3034, "learning_rate": 8.218367907421631e-07, "epoch": 0.909312, "percentage": 90.94, "elapsed_time": "13:03:09", "remaining_time": "1:18:03"}
3553
+ {"current_steps": 3553, "total_steps": 3906, "loss": 1.3037, "learning_rate": 8.172320413978974e-07, "epoch": 0.909568, "percentage": 90.96, "elapsed_time": "13:03:22", "remaining_time": "1:17:49"}
3554
+ {"current_steps": 3554, "total_steps": 3906, "loss": 1.266, "learning_rate": 8.126399594481161e-07, "epoch": 0.909824, "percentage": 90.99, "elapsed_time": "13:03:35", "remaining_time": "1:17:36"}
3555
+ {"current_steps": 3555, "total_steps": 3906, "loss": 1.3365, "learning_rate": 8.080605479252158e-07, "epoch": 0.91008, "percentage": 91.01, "elapsed_time": "13:03:48", "remaining_time": "1:17:23"}
3556
+ {"current_steps": 3556, "total_steps": 3906, "loss": 1.3029, "learning_rate": 8.034938098532286e-07, "epoch": 0.910336, "percentage": 91.04, "elapsed_time": "13:04:01", "remaining_time": "1:17:10"}
3557
+ {"current_steps": 3557, "total_steps": 3906, "loss": 1.3458, "learning_rate": 7.989397482478045e-07, "epoch": 0.910592, "percentage": 91.07, "elapsed_time": "13:04:15", "remaining_time": "1:16:56"}
3558
+ {"current_steps": 3558, "total_steps": 3906, "loss": 1.3472, "learning_rate": 7.94398366116238e-07, "epoch": 0.910848, "percentage": 91.09, "elapsed_time": "13:04:28", "remaining_time": "1:16:43"}
3559
+ {"current_steps": 3559, "total_steps": 3906, "loss": 1.3004, "learning_rate": 7.89869666457439e-07, "epoch": 0.911104, "percentage": 91.12, "elapsed_time": "13:04:41", "remaining_time": "1:16:30"}
3560
+ {"current_steps": 3560, "total_steps": 3906, "loss": 1.3341, "learning_rate": 7.853536522619487e-07, "epoch": 0.91136, "percentage": 91.14, "elapsed_time": "13:04:54", "remaining_time": "1:16:17"}
3561
+ {"current_steps": 3561, "total_steps": 3906, "loss": 1.2506, "learning_rate": 7.808503265119305e-07, "epoch": 0.911616, "percentage": 91.17, "elapsed_time": "13:05:07", "remaining_time": "1:16:03"}
3562
+ {"current_steps": 3562, "total_steps": 3906, "loss": 1.3526, "learning_rate": 7.763596921811701e-07, "epoch": 0.911872, "percentage": 91.19, "elapsed_time": "13:05:21", "remaining_time": "1:15:50"}
3563
+ {"current_steps": 3563, "total_steps": 3906, "loss": 1.3585, "learning_rate": 7.718817522350641e-07, "epoch": 0.912128, "percentage": 91.22, "elapsed_time": "13:05:34", "remaining_time": "1:15:37"}
3564
+ {"current_steps": 3564, "total_steps": 3906, "loss": 1.3286, "learning_rate": 7.674165096306385e-07, "epoch": 0.912384, "percentage": 91.24, "elapsed_time": "13:05:47", "remaining_time": "1:15:24"}
3565
+ {"current_steps": 3565, "total_steps": 3906, "loss": 1.3681, "learning_rate": 7.629639673165257e-07, "epoch": 0.91264, "percentage": 91.27, "elapsed_time": "13:06:00", "remaining_time": "1:15:11"}
3566
+ {"current_steps": 3566, "total_steps": 3906, "loss": 1.3097, "learning_rate": 7.585241282329759e-07, "epoch": 0.912896, "percentage": 91.3, "elapsed_time": "13:06:13", "remaining_time": "1:14:57"}
3567
+ {"current_steps": 3567, "total_steps": 3906, "loss": 1.3075, "learning_rate": 7.54096995311846e-07, "epoch": 0.913152, "percentage": 91.32, "elapsed_time": "13:06:27", "remaining_time": "1:14:44"}
3568
+ {"current_steps": 3568, "total_steps": 3906, "loss": 1.3031, "learning_rate": 7.496825714766131e-07, "epoch": 0.913408, "percentage": 91.35, "elapsed_time": "13:06:40", "remaining_time": "1:14:31"}
3569
+ {"current_steps": 3569, "total_steps": 3906, "loss": 1.305, "learning_rate": 7.452808596423455e-07, "epoch": 0.913664, "percentage": 91.37, "elapsed_time": "13:06:53", "remaining_time": "1:14:18"}
3570
+ {"current_steps": 3570, "total_steps": 3906, "loss": 1.3191, "learning_rate": 7.408918627157313e-07, "epoch": 0.91392, "percentage": 91.4, "elapsed_time": "13:07:06", "remaining_time": "1:14:04"}
3571
+ {"current_steps": 3571, "total_steps": 3906, "loss": 1.3391, "learning_rate": 7.365155835950544e-07, "epoch": 0.914176, "percentage": 91.42, "elapsed_time": "13:07:19", "remaining_time": "1:13:51"}
3572
+ {"current_steps": 3572, "total_steps": 3906, "loss": 1.3668, "learning_rate": 7.321520251702052e-07, "epoch": 0.914432, "percentage": 91.45, "elapsed_time": "13:07:33", "remaining_time": "1:13:38"}
3573
+ {"current_steps": 3573, "total_steps": 3906, "loss": 1.3627, "learning_rate": 7.2780119032267e-07, "epoch": 0.914688, "percentage": 91.47, "elapsed_time": "13:07:46", "remaining_time": "1:13:25"}
3574
+ {"current_steps": 3574, "total_steps": 3906, "loss": 1.3187, "learning_rate": 7.234630819255373e-07, "epoch": 0.914944, "percentage": 91.5, "elapsed_time": "13:07:59", "remaining_time": "1:13:11"}
3575
+ {"current_steps": 3575, "total_steps": 3906, "loss": 1.3115, "learning_rate": 7.191377028434865e-07, "epoch": 0.9152, "percentage": 91.53, "elapsed_time": "13:08:12", "remaining_time": "1:12:58"}
3576
+ {"current_steps": 3576, "total_steps": 3906, "loss": 1.3007, "learning_rate": 7.148250559327952e-07, "epoch": 0.915456, "percentage": 91.55, "elapsed_time": "13:08:25", "remaining_time": "1:12:45"}
3577
+ {"current_steps": 3577, "total_steps": 3906, "loss": 1.2907, "learning_rate": 7.105251440413297e-07, "epoch": 0.915712, "percentage": 91.58, "elapsed_time": "13:08:39", "remaining_time": "1:12:32"}
3578
+ {"current_steps": 3578, "total_steps": 3906, "loss": 1.3329, "learning_rate": 7.062379700085497e-07, "epoch": 0.915968, "percentage": 91.6, "elapsed_time": "13:08:52", "remaining_time": "1:12:19"}
3579
+ {"current_steps": 3579, "total_steps": 3906, "loss": 1.2875, "learning_rate": 7.019635366655042e-07, "epoch": 0.916224, "percentage": 91.63, "elapsed_time": "13:09:05", "remaining_time": "1:12:05"}
3580
+ {"current_steps": 3580, "total_steps": 3906, "loss": 1.3058, "learning_rate": 6.977018468348262e-07, "epoch": 0.91648, "percentage": 91.65, "elapsed_time": "13:09:18", "remaining_time": "1:11:52"}
3581
+ {"current_steps": 3581, "total_steps": 3906, "loss": 1.3191, "learning_rate": 6.934529033307336e-07, "epoch": 0.916736, "percentage": 91.68, "elapsed_time": "13:09:31", "remaining_time": "1:11:39"}
3582
+ {"current_steps": 3582, "total_steps": 3906, "loss": 1.3425, "learning_rate": 6.892167089590307e-07, "epoch": 0.916992, "percentage": 91.71, "elapsed_time": "13:09:45", "remaining_time": "1:11:26"}
3583
+ {"current_steps": 3583, "total_steps": 3906, "loss": 1.3287, "learning_rate": 6.849932665170955e-07, "epoch": 0.917248, "percentage": 91.73, "elapsed_time": "13:09:58", "remaining_time": "1:11:12"}
3584
+ {"current_steps": 3584, "total_steps": 3906, "loss": 1.3421, "learning_rate": 6.807825787938949e-07, "epoch": 0.917504, "percentage": 91.76, "elapsed_time": "13:10:11", "remaining_time": "1:10:59"}
3585
+ {"current_steps": 3585, "total_steps": 3906, "loss": 1.3524, "learning_rate": 6.76584648569969e-07, "epoch": 0.91776, "percentage": 91.78, "elapsed_time": "13:10:24", "remaining_time": "1:10:46"}
3586
+ {"current_steps": 3586, "total_steps": 3906, "loss": 1.3197, "learning_rate": 6.72399478617427e-07, "epoch": 0.918016, "percentage": 91.81, "elapsed_time": "13:10:37", "remaining_time": "1:10:33"}
3587
+ {"current_steps": 3587, "total_steps": 3906, "loss": 1.335, "learning_rate": 6.68227071699965e-07, "epoch": 0.918272, "percentage": 91.83, "elapsed_time": "13:10:51", "remaining_time": "1:10:19"}
3588
+ {"current_steps": 3588, "total_steps": 3906, "loss": 1.3649, "learning_rate": 6.640674305728368e-07, "epoch": 0.918528, "percentage": 91.86, "elapsed_time": "13:11:04", "remaining_time": "1:10:06"}
3589
+ {"current_steps": 3589, "total_steps": 3906, "loss": 1.3059, "learning_rate": 6.599205579828738e-07, "epoch": 0.918784, "percentage": 91.88, "elapsed_time": "13:11:17", "remaining_time": "1:09:53"}
3590
+ {"current_steps": 3590, "total_steps": 3906, "loss": 1.3199, "learning_rate": 6.557864566684791e-07, "epoch": 0.91904, "percentage": 91.91, "elapsed_time": "13:11:30", "remaining_time": "1:09:40"}
3591
+ {"current_steps": 3591, "total_steps": 3906, "loss": 1.3236, "learning_rate": 6.516651293596154e-07, "epoch": 0.919296, "percentage": 91.94, "elapsed_time": "13:11:43", "remaining_time": "1:09:27"}
3592
+ {"current_steps": 3592, "total_steps": 3906, "loss": 1.2663, "learning_rate": 6.475565787778149e-07, "epoch": 0.919552, "percentage": 91.96, "elapsed_time": "13:11:57", "remaining_time": "1:09:13"}
3593
+ {"current_steps": 3593, "total_steps": 3906, "loss": 1.3068, "learning_rate": 6.434608076361648e-07, "epoch": 0.919808, "percentage": 91.99, "elapsed_time": "13:12:10", "remaining_time": "1:09:00"}
3594
+ {"current_steps": 3594, "total_steps": 3906, "loss": 1.3138, "learning_rate": 6.393778186393263e-07, "epoch": 0.920064, "percentage": 92.01, "elapsed_time": "13:12:23", "remaining_time": "1:08:47"}
3595
+ {"current_steps": 3595, "total_steps": 3906, "loss": 1.3098, "learning_rate": 6.353076144835069e-07, "epoch": 0.92032, "percentage": 92.04, "elapsed_time": "13:12:36", "remaining_time": "1:08:34"}
3596
+ {"current_steps": 3596, "total_steps": 3906, "loss": 1.2959, "learning_rate": 6.312501978564811e-07, "epoch": 0.920576, "percentage": 92.06, "elapsed_time": "13:12:49", "remaining_time": "1:08:20"}
3597
+ {"current_steps": 3597, "total_steps": 3906, "loss": 1.3137, "learning_rate": 6.272055714375747e-07, "epoch": 0.920832, "percentage": 92.09, "elapsed_time": "13:13:02", "remaining_time": "1:08:07"}
3598
+ {"current_steps": 3598, "total_steps": 3906, "loss": 1.2808, "learning_rate": 6.231737378976665e-07, "epoch": 0.921088, "percentage": 92.11, "elapsed_time": "13:13:16", "remaining_time": "1:07:54"}
3599
+ {"current_steps": 3599, "total_steps": 3906, "loss": 1.3073, "learning_rate": 6.191546998991916e-07, "epoch": 0.921344, "percentage": 92.14, "elapsed_time": "13:13:29", "remaining_time": "1:07:41"}
3600
+ {"current_steps": 3600, "total_steps": 3906, "loss": 1.375, "learning_rate": 6.151484600961266e-07, "epoch": 0.9216, "percentage": 92.17, "elapsed_time": "13:13:42", "remaining_time": "1:07:27"}
3601
+ {"current_steps": 3601, "total_steps": 3906, "loss": 1.3123, "learning_rate": 6.111550211340112e-07, "epoch": 0.921856, "percentage": 92.19, "elapsed_time": "13:14:14", "remaining_time": "1:07:16"}
3602
+ {"current_steps": 3602, "total_steps": 3906, "loss": 1.2843, "learning_rate": 6.071743856499179e-07, "epoch": 0.922112, "percentage": 92.22, "elapsed_time": "13:14:27", "remaining_time": "1:07:03"}
3603
+ {"current_steps": 3603, "total_steps": 3906, "loss": 1.3143, "learning_rate": 6.032065562724754e-07, "epoch": 0.922368, "percentage": 92.24, "elapsed_time": "13:14:40", "remaining_time": "1:06:49"}
3604
+ {"current_steps": 3604, "total_steps": 3906, "loss": 1.3222, "learning_rate": 5.992515356218475e-07, "epoch": 0.922624, "percentage": 92.27, "elapsed_time": "13:14:54", "remaining_time": "1:06:36"}
3605
+ {"current_steps": 3605, "total_steps": 3906, "loss": 1.2809, "learning_rate": 5.953093263097476e-07, "epoch": 0.92288, "percentage": 92.29, "elapsed_time": "13:15:07", "remaining_time": "1:06:23"}
3606
+ {"current_steps": 3606, "total_steps": 3906, "loss": 1.3254, "learning_rate": 5.913799309394175e-07, "epoch": 0.923136, "percentage": 92.32, "elapsed_time": "13:15:20", "remaining_time": "1:06:10"}
3607
+ {"current_steps": 3607, "total_steps": 3906, "loss": 1.3213, "learning_rate": 5.874633521056483e-07, "epoch": 0.923392, "percentage": 92.35, "elapsed_time": "13:15:33", "remaining_time": "1:05:56"}
3608
+ {"current_steps": 3608, "total_steps": 3906, "loss": 1.2785, "learning_rate": 5.835595923947668e-07, "epoch": 0.923648, "percentage": 92.37, "elapsed_time": "13:15:46", "remaining_time": "1:05:43"}
3609
+ {"current_steps": 3609, "total_steps": 3906, "loss": 1.2989, "learning_rate": 5.796686543846264e-07, "epoch": 0.923904, "percentage": 92.4, "elapsed_time": "13:16:00", "remaining_time": "1:05:30"}
3610
+ {"current_steps": 3610, "total_steps": 3906, "loss": 1.3156, "learning_rate": 5.757905406446229e-07, "epoch": 0.92416, "percentage": 92.42, "elapsed_time": "13:16:13", "remaining_time": "1:05:17"}
3611
+ {"current_steps": 3611, "total_steps": 3906, "loss": 1.3223, "learning_rate": 5.719252537356768e-07, "epoch": 0.924416, "percentage": 92.45, "elapsed_time": "13:16:26", "remaining_time": "1:05:03"}
3612
+ {"current_steps": 3612, "total_steps": 3906, "loss": 1.3346, "learning_rate": 5.680727962102417e-07, "epoch": 0.924672, "percentage": 92.47, "elapsed_time": "13:16:39", "remaining_time": "1:04:50"}
3613
+ {"current_steps": 3613, "total_steps": 3906, "loss": 1.3187, "learning_rate": 5.642331706122983e-07, "epoch": 0.924928, "percentage": 92.5, "elapsed_time": "13:16:52", "remaining_time": "1:04:37"}
3614
+ {"current_steps": 3614, "total_steps": 3906, "loss": 1.3196, "learning_rate": 5.604063794773562e-07, "epoch": 0.925184, "percentage": 92.52, "elapsed_time": "13:17:06", "remaining_time": "1:04:24"}