|
--- |
|
library_name: hivex |
|
original_train_name: AerialWildfireSuppression_difficulty_3_task_5_run_id_1_train |
|
tags: |
|
- hivex |
|
- hivex-aerial-wildfire-suppression |
|
- reinforcement-learning |
|
- multi-agent-reinforcement-learning |
|
model-index: |
|
- name: hivex-AWS-PPO-baseline-task-5-difficulty-3 |
|
results: |
|
- task: |
|
type: sub-task |
|
name: pick_up_water |
|
task-id: 5 |
|
difficulty-id: 3 |
|
dataset: |
|
name: hivex-aerial-wildfire-suppression |
|
type: hivex-aerial-wildfire-suppression |
|
metrics: |
|
- type: water_pickup |
|
value: 0.9977272719144821 +/- 0.010163948987181867 |
|
name: Water Pickup |
|
verified: true |
|
- type: cumulative_reward |
|
value: 94.67084541320801 +/- 0.6861259192735064 |
|
name: Cumulative Reward |
|
verified: true |
|
--- |
|
|
|
This model serves as the baseline for the **Aerial Wildfire Suppression** environment, trained and tested on task <code>5</code> with difficulty <code>3</code> using the Proximal Policy Optimization (PPO) algorithm.<br><br> |
|
|
|
Environment: **Aerial Wildfire Suppression**<br> |
|
Task: <code>5</code><br> |
|
Difficulty: <code>3</code><br> |
|
Algorithm: <code>PPO</code><br> |
|
Episode Length: <code>3000</code><br> |
|
Training <code>max_steps</code>: <code>1800000</code><br> |
|
Testing <code>max_steps</code>: <code>180000</code><br><br> |
|
|
|
Train & Test [Scripts](https://github.com/hivex-research/hivex)<br> |
|
Download the [Environment](https://github.com/hivex-research/hivex-environments) |
|
|
|
[hivex-paper]: https://arxiv.org/abs/2501.04180 |