hkivancoral's picture
End of training
f813776
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_small_adamax_00001_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6

hushem_1x_deit_small_adamax_00001_fold1

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1270
  • Accuracy: 0.6

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.3199 0.3333
1.3414 2.0 12 1.2923 0.4667
1.3414 3.0 18 1.2886 0.4667
1.0791 4.0 24 1.2761 0.4667
0.9244 5.0 30 1.2453 0.4889
0.9244 6.0 36 1.2252 0.4667
0.7694 7.0 42 1.2158 0.5111
0.7694 8.0 48 1.2163 0.4667
0.6552 9.0 54 1.2081 0.5111
0.5314 10.0 60 1.1883 0.5556
0.5314 11.0 66 1.1802 0.5556
0.4407 12.0 72 1.1737 0.5778
0.4407 13.0 78 1.1623 0.6222
0.3864 14.0 84 1.1625 0.6222
0.3093 15.0 90 1.1653 0.6222
0.3093 16.0 96 1.1658 0.6222
0.2597 17.0 102 1.1519 0.6444
0.2597 18.0 108 1.1466 0.6222
0.2099 19.0 114 1.1591 0.6
0.1766 20.0 120 1.1509 0.5778
0.1766 21.0 126 1.1488 0.5778
0.1537 22.0 132 1.1482 0.5778
0.1537 23.0 138 1.1427 0.6222
0.1244 24.0 144 1.1370 0.6
0.103 25.0 150 1.1285 0.6
0.103 26.0 156 1.1323 0.6
0.089 27.0 162 1.1268 0.6
0.089 28.0 168 1.1377 0.6
0.0777 29.0 174 1.1346 0.6
0.068 30.0 180 1.1274 0.6
0.068 31.0 186 1.1199 0.6
0.0597 32.0 192 1.1245 0.6
0.0597 33.0 198 1.1296 0.6
0.0547 34.0 204 1.1270 0.6
0.0493 35.0 210 1.1241 0.6
0.0493 36.0 216 1.1250 0.6
0.0441 37.0 222 1.1253 0.6
0.0441 38.0 228 1.1296 0.6
0.0409 39.0 234 1.1287 0.6
0.0405 40.0 240 1.1275 0.6
0.0405 41.0 246 1.1272 0.6
0.0391 42.0 252 1.1270 0.6
0.0391 43.0 258 1.1270 0.6
0.0395 44.0 264 1.1270 0.6
0.0377 45.0 270 1.1270 0.6
0.0377 46.0 276 1.1270 0.6
0.0388 47.0 282 1.1270 0.6
0.0388 48.0 288 1.1270 0.6
0.0366 49.0 294 1.1270 0.6
0.0396 50.0 300 1.1270 0.6

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1