hkivancoral's picture
End of training
ed31b3f
|
raw
history blame
4.83 kB
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_small_adamax_00001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6585365853658537

hushem_1x_deit_small_adamax_00001_fold5

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7730
  • Accuracy: 0.6585

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.3080 0.3171
1.348 2.0 12 1.2421 0.3659
1.348 3.0 18 1.1840 0.4634
1.1221 4.0 24 1.1443 0.4634
0.9962 5.0 30 1.1209 0.4634
0.9962 6.0 36 1.0884 0.5366
0.8532 7.0 42 1.0512 0.5122
0.8532 8.0 48 1.0147 0.5366
0.73 9.0 54 0.9886 0.5366
0.61 10.0 60 0.9683 0.5610
0.61 11.0 66 0.9452 0.5854
0.5241 12.0 72 0.9201 0.6341
0.5241 13.0 78 0.9013 0.6341
0.4293 14.0 84 0.8851 0.6341
0.3674 15.0 90 0.8707 0.6341
0.3674 16.0 96 0.8542 0.6341
0.304 17.0 102 0.8474 0.6341
0.304 18.0 108 0.8370 0.6341
0.2449 19.0 114 0.8233 0.6341
0.2119 20.0 120 0.8193 0.6341
0.2119 21.0 126 0.8116 0.6341
0.1788 22.0 132 0.8051 0.6341
0.1788 23.0 138 0.7954 0.6341
0.1445 24.0 144 0.7897 0.6341
0.1262 25.0 150 0.7881 0.6829
0.1262 26.0 156 0.7818 0.6585
0.1066 27.0 162 0.7872 0.6829
0.1066 28.0 168 0.7762 0.6585
0.0891 29.0 174 0.7687 0.6585
0.0806 30.0 180 0.7658 0.6829
0.0806 31.0 186 0.7688 0.6829
0.0692 32.0 192 0.7732 0.6829
0.0692 33.0 198 0.7763 0.6585
0.0592 34.0 204 0.7749 0.6585
0.0587 35.0 210 0.7694 0.6829
0.0587 36.0 216 0.7701 0.6829
0.0549 37.0 222 0.7733 0.6585
0.0549 38.0 228 0.7741 0.6585
0.0463 39.0 234 0.7744 0.6585
0.0481 40.0 240 0.7732 0.6585
0.0481 41.0 246 0.7732 0.6585
0.0468 42.0 252 0.7730 0.6585
0.0468 43.0 258 0.7730 0.6585
0.0455 44.0 264 0.7730 0.6585
0.0473 45.0 270 0.7730 0.6585
0.0473 46.0 276 0.7730 0.6585
0.0444 47.0 282 0.7730 0.6585
0.0444 48.0 288 0.7730 0.6585
0.048 49.0 294 0.7730 0.6585
0.0476 50.0 300 0.7730 0.6585

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1