hkivancoral's picture
End of training
7f1b9df
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_small_adamax_001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5777777777777777

hushem_1x_deit_small_adamax_001_fold2

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 3.0653
  • Accuracy: 0.5778

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.5866 0.2444
1.9023 2.0 12 1.3764 0.2444
1.9023 3.0 18 1.3051 0.4222
1.349 4.0 24 1.1457 0.4889
1.2765 5.0 30 1.1296 0.5333
1.2765 6.0 36 1.0799 0.4667
0.9532 7.0 42 0.9251 0.5778
0.9532 8.0 48 0.9697 0.6
0.606 9.0 54 1.3926 0.4889
0.572 10.0 60 1.7732 0.5778
0.572 11.0 66 1.3882 0.5556
0.5961 12.0 72 1.7835 0.5333
0.5961 13.0 78 1.6876 0.5111
0.36 14.0 84 2.6292 0.5556
0.1021 15.0 90 3.3955 0.4444
0.1021 16.0 96 2.7199 0.5333
0.0705 17.0 102 3.2188 0.5778
0.0705 18.0 108 2.9572 0.5778
0.1408 19.0 114 3.4311 0.6222
0.0481 20.0 120 3.3680 0.5111
0.0481 21.0 126 3.9440 0.4889
0.0285 22.0 132 3.0805 0.5111
0.0285 23.0 138 3.2788 0.4889
0.0077 24.0 144 3.3798 0.5111
0.0144 25.0 150 3.3118 0.5333
0.0144 26.0 156 3.1251 0.5111
0.0005 27.0 162 2.9134 0.5778
0.0005 28.0 168 2.8352 0.6
0.0006 29.0 174 2.7529 0.5778
0.0002 30.0 180 2.8235 0.6
0.0002 31.0 186 2.8802 0.6
0.0001 32.0 192 2.9253 0.5778
0.0001 33.0 198 2.9651 0.5778
0.0001 34.0 204 2.9943 0.5778
0.0001 35.0 210 3.0146 0.5778
0.0001 36.0 216 3.0314 0.5778
0.0001 37.0 222 3.0446 0.5778
0.0001 38.0 228 3.0538 0.5778
0.0001 39.0 234 3.0596 0.5778
0.0001 40.0 240 3.0631 0.5778
0.0001 41.0 246 3.0649 0.5778
0.0001 42.0 252 3.0653 0.5778
0.0001 43.0 258 3.0653 0.5778
0.0001 44.0 264 3.0653 0.5778
0.0001 45.0 270 3.0653 0.5778
0.0001 46.0 276 3.0653 0.5778
0.0001 47.0 282 3.0653 0.5778
0.0001 48.0 288 3.0653 0.5778
0.0001 49.0 294 3.0653 0.5778
0.0001 50.0 300 3.0653 0.5778

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1