hkivancoral's picture
End of training
02c7595
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_small_sgd_00001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.17777777777777778

hushem_1x_deit_small_sgd_00001_fold2

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5076
  • Accuracy: 0.1778

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.5128 0.1778
1.5351 2.0 12 1.5126 0.1778
1.5351 3.0 18 1.5123 0.1778
1.521 4.0 24 1.5120 0.1778
1.5462 5.0 30 1.5118 0.1778
1.5462 6.0 36 1.5116 0.1778
1.5099 7.0 42 1.5113 0.1778
1.5099 8.0 48 1.5111 0.1778
1.5333 9.0 54 1.5109 0.1778
1.5206 10.0 60 1.5106 0.1778
1.5206 11.0 66 1.5105 0.1778
1.5227 12.0 72 1.5103 0.1778
1.5227 13.0 78 1.5101 0.1778
1.5256 14.0 84 1.5099 0.1778
1.5395 15.0 90 1.5097 0.1778
1.5395 16.0 96 1.5095 0.1778
1.5169 17.0 102 1.5094 0.1778
1.5169 18.0 108 1.5092 0.1778
1.5502 19.0 114 1.5091 0.1778
1.4882 20.0 120 1.5090 0.1778
1.4882 21.0 126 1.5088 0.1778
1.5202 22.0 132 1.5087 0.1778
1.5202 23.0 138 1.5086 0.1778
1.5139 24.0 144 1.5085 0.1778
1.4995 25.0 150 1.5084 0.1778
1.4995 26.0 156 1.5083 0.1778
1.5175 27.0 162 1.5082 0.1778
1.5175 28.0 168 1.5081 0.1778
1.5365 29.0 174 1.5081 0.1778
1.5232 30.0 180 1.5080 0.1778
1.5232 31.0 186 1.5079 0.1778
1.5236 32.0 192 1.5079 0.1778
1.5236 33.0 198 1.5078 0.1778
1.5292 34.0 204 1.5078 0.1778
1.544 35.0 210 1.5077 0.1778
1.544 36.0 216 1.5077 0.1778
1.4971 37.0 222 1.5077 0.1778
1.4971 38.0 228 1.5077 0.1778
1.4951 39.0 234 1.5076 0.1778
1.5452 40.0 240 1.5076 0.1778
1.5452 41.0 246 1.5076 0.1778
1.5473 42.0 252 1.5076 0.1778
1.5473 43.0 258 1.5076 0.1778
1.5095 44.0 264 1.5076 0.1778
1.495 45.0 270 1.5076 0.1778
1.495 46.0 276 1.5076 0.1778
1.5118 47.0 282 1.5076 0.1778
1.5118 48.0 288 1.5076 0.1778
1.493 49.0 294 1.5076 0.1778
1.528 50.0 300 1.5076 0.1778

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1