hkivancoral's picture
End of training
c712446
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_small_sgd_001_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.4666666666666667

hushem_1x_deit_small_sgd_001_fold1

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2536
  • Accuracy: 0.4667

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.3733 0.3778
1.5546 2.0 12 1.3601 0.4
1.5546 3.0 18 1.3490 0.4222
1.5316 4.0 24 1.3414 0.4222
1.4864 5.0 30 1.3332 0.4222
1.4864 6.0 36 1.3258 0.4222
1.4723 7.0 42 1.3198 0.4222
1.4723 8.0 48 1.3148 0.4
1.4485 9.0 54 1.3096 0.4
1.4339 10.0 60 1.3042 0.4
1.4339 11.0 66 1.3005 0.4222
1.4182 12.0 72 1.2965 0.4222
1.4182 13.0 78 1.2931 0.4
1.3944 14.0 84 1.2902 0.4222
1.3955 15.0 90 1.2868 0.4444
1.3955 16.0 96 1.2841 0.4444
1.3685 17.0 102 1.2813 0.4444
1.3685 18.0 108 1.2791 0.4444
1.351 19.0 114 1.2769 0.4444
1.3583 20.0 120 1.2750 0.4667
1.3583 21.0 126 1.2734 0.4444
1.3432 22.0 132 1.2719 0.4444
1.3432 23.0 138 1.2696 0.4444
1.3309 24.0 144 1.2677 0.4444
1.3166 25.0 150 1.2667 0.4444
1.3166 26.0 156 1.2651 0.4667
1.3168 27.0 162 1.2639 0.4667
1.3168 28.0 168 1.2624 0.4667
1.3102 29.0 174 1.2615 0.4667
1.3034 30.0 180 1.2602 0.4667
1.3034 31.0 186 1.2590 0.4667
1.3106 32.0 192 1.2580 0.4667
1.3106 33.0 198 1.2570 0.4667
1.2903 34.0 204 1.2562 0.4667
1.2915 35.0 210 1.2554 0.4667
1.2915 36.0 216 1.2549 0.4667
1.2913 37.0 222 1.2546 0.4667
1.2913 38.0 228 1.2542 0.4667
1.2715 39.0 234 1.2539 0.4667
1.2929 40.0 240 1.2538 0.4667
1.2929 41.0 246 1.2537 0.4667
1.2815 42.0 252 1.2536 0.4667
1.2815 43.0 258 1.2536 0.4667
1.2834 44.0 264 1.2536 0.4667
1.2687 45.0 270 1.2536 0.4667
1.2687 46.0 276 1.2536 0.4667
1.2845 47.0 282 1.2536 0.4667
1.2845 48.0 288 1.2536 0.4667
1.2639 49.0 294 1.2536 0.4667
1.2911 50.0 300 1.2536 0.4667

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1