hkivancoral's picture
End of training
d328863
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_small_sgd_001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.35555555555555557

hushem_1x_deit_small_sgd_001_fold2

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3470
  • Accuracy: 0.3556

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.4885 0.2
1.5055 2.0 12 1.4667 0.2667
1.5055 3.0 18 1.4496 0.2444
1.4394 4.0 24 1.4374 0.2444
1.4154 5.0 30 1.4269 0.2444
1.4154 6.0 36 1.4185 0.2667
1.3643 7.0 42 1.4107 0.3333
1.3643 8.0 48 1.4053 0.3556
1.3559 9.0 54 1.4001 0.3556
1.3227 10.0 60 1.3952 0.3556
1.3227 11.0 66 1.3910 0.3556
1.3197 12.0 72 1.3872 0.3556
1.3197 13.0 78 1.3837 0.3556
1.2846 14.0 84 1.3804 0.3556
1.2901 15.0 90 1.3773 0.3556
1.2901 16.0 96 1.3743 0.3333
1.2643 17.0 102 1.3716 0.3333
1.2643 18.0 108 1.3691 0.3333
1.2844 19.0 114 1.3667 0.3333
1.2293 20.0 120 1.3643 0.3333
1.2293 21.0 126 1.3623 0.3333
1.2404 22.0 132 1.3607 0.3333
1.2404 23.0 138 1.3587 0.3333
1.2359 24.0 144 1.3573 0.3333
1.2062 25.0 150 1.3561 0.3333
1.2062 26.0 156 1.3548 0.3333
1.2199 27.0 162 1.3536 0.3333
1.2199 28.0 168 1.3527 0.3333
1.2151 29.0 174 1.3520 0.3556
1.2005 30.0 180 1.3511 0.3556
1.2005 31.0 186 1.3504 0.3556
1.1928 32.0 192 1.3498 0.3556
1.1928 33.0 198 1.3492 0.3556
1.1891 34.0 204 1.3487 0.3556
1.1974 35.0 210 1.3482 0.3556
1.1974 36.0 216 1.3478 0.3556
1.1657 37.0 222 1.3476 0.3556
1.1657 38.0 228 1.3474 0.3556
1.1722 39.0 234 1.3472 0.3556
1.2031 40.0 240 1.3471 0.3556
1.2031 41.0 246 1.3470 0.3556
1.1899 42.0 252 1.3470 0.3556
1.1899 43.0 258 1.3470 0.3556
1.1761 44.0 264 1.3470 0.3556
1.1715 45.0 270 1.3470 0.3556
1.1715 46.0 276 1.3470 0.3556
1.1816 47.0 282 1.3470 0.3556
1.1816 48.0 288 1.3470 0.3556
1.1504 49.0 294 1.3470 0.3556
1.1896 50.0 300 1.3470 0.3556

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1