hkivancoral's picture
End of training
f081894
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_tiny_adamax_00001_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.4222222222222222

hushem_1x_deit_tiny_adamax_00001_fold1

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1341
  • Accuracy: 0.4222

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.4260 0.2
1.446 2.0 12 1.3794 0.2889
1.446 3.0 18 1.3570 0.3556
1.184 4.0 24 1.3382 0.3111
1.0671 5.0 30 1.3283 0.3111
1.0671 6.0 36 1.3144 0.2889
0.9249 7.0 42 1.2898 0.3333
0.9249 8.0 48 1.2748 0.3556
0.8443 9.0 54 1.2692 0.3333
0.7477 10.0 60 1.2518 0.3778
0.7477 11.0 66 1.2338 0.4
0.662 12.0 72 1.2193 0.3778
0.662 13.0 78 1.2195 0.4
0.622 14.0 84 1.2039 0.3778
0.5154 15.0 90 1.1949 0.4
0.5154 16.0 96 1.1879 0.4
0.4537 17.0 102 1.1810 0.4
0.4537 18.0 108 1.1670 0.4
0.3859 19.0 114 1.1628 0.4
0.3586 20.0 120 1.1721 0.4
0.3586 21.0 126 1.1698 0.4222
0.3151 22.0 132 1.1603 0.4
0.3151 23.0 138 1.1584 0.4222
0.2881 24.0 144 1.1519 0.4222
0.2498 25.0 150 1.1515 0.4222
0.2498 26.0 156 1.1445 0.4222
0.232 27.0 162 1.1430 0.4222
0.232 28.0 168 1.1452 0.4222
0.2183 29.0 174 1.1406 0.4222
0.1798 30.0 180 1.1348 0.4222
0.1798 31.0 186 1.1304 0.4222
0.1811 32.0 192 1.1281 0.4222
0.1811 33.0 198 1.1317 0.4222
0.1748 34.0 204 1.1302 0.4222
0.1492 35.0 210 1.1303 0.4222
0.1492 36.0 216 1.1319 0.4222
0.1477 37.0 222 1.1328 0.4222
0.1477 38.0 228 1.1366 0.4222
0.1357 39.0 234 1.1362 0.4222
0.1379 40.0 240 1.1351 0.4222
0.1379 41.0 246 1.1344 0.4222
0.1325 42.0 252 1.1341 0.4222
0.1325 43.0 258 1.1341 0.4222
0.1377 44.0 264 1.1341 0.4222
0.1332 45.0 270 1.1341 0.4222
0.1332 46.0 276 1.1341 0.4222
0.1323 47.0 282 1.1341 0.4222
0.1323 48.0 288 1.1341 0.4222
0.1276 49.0 294 1.1341 0.4222
0.1376 50.0 300 1.1341 0.4222

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1