hkivancoral's picture
End of training
db24475
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_tiny_adamax_00001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5333333333333333

hushem_1x_deit_tiny_adamax_00001_fold2

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3630
  • Accuracy: 0.5333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.3933 0.2889
1.4502 2.0 12 1.3758 0.2889
1.4502 3.0 18 1.3846 0.1556
1.1864 4.0 24 1.3867 0.2
1.0417 5.0 30 1.4200 0.2222
1.0417 6.0 36 1.4398 0.2667
0.8998 7.0 42 1.4309 0.2667
0.8998 8.0 48 1.4422 0.2889
0.802 9.0 54 1.4525 0.3111
0.7173 10.0 60 1.4451 0.3333
0.7173 11.0 66 1.4170 0.3556
0.6327 12.0 72 1.4262 0.3778
0.6327 13.0 78 1.4500 0.3778
0.5705 14.0 84 1.4362 0.3778
0.4928 15.0 90 1.4119 0.3778
0.4928 16.0 96 1.4031 0.4
0.4272 17.0 102 1.4009 0.4
0.4272 18.0 108 1.4134 0.4
0.3882 19.0 114 1.4007 0.4
0.3396 20.0 120 1.3936 0.4
0.3396 21.0 126 1.3916 0.4222
0.2975 22.0 132 1.3801 0.4222
0.2975 23.0 138 1.3854 0.4222
0.2664 24.0 144 1.3827 0.4444
0.2292 25.0 150 1.3826 0.4444
0.2292 26.0 156 1.3717 0.4667
0.2136 27.0 162 1.3670 0.4667
0.2136 28.0 168 1.3720 0.4667
0.1873 29.0 174 1.3622 0.4667
0.1666 30.0 180 1.3494 0.5111
0.1666 31.0 186 1.3586 0.4889
0.1595 32.0 192 1.3677 0.5111
0.1595 33.0 198 1.3760 0.5111
0.1486 34.0 204 1.3711 0.5111
0.1401 35.0 210 1.3652 0.5111
0.1401 36.0 216 1.3610 0.5333
0.1317 37.0 222 1.3597 0.5333
0.1317 38.0 228 1.3618 0.5333
0.1202 39.0 234 1.3633 0.5333
0.122 40.0 240 1.3628 0.5333
0.122 41.0 246 1.3631 0.5333
0.1214 42.0 252 1.3630 0.5333
0.1214 43.0 258 1.3630 0.5333
0.1203 44.0 264 1.3630 0.5333
0.1185 45.0 270 1.3630 0.5333
0.1185 46.0 276 1.3630 0.5333
0.1174 47.0 282 1.3630 0.5333
0.1174 48.0 288 1.3630 0.5333
0.1152 49.0 294 1.3630 0.5333
0.1204 50.0 300 1.3630 0.5333

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1