hkivancoral's picture
End of training
3a1cd2c
|
raw
history blame
4.82 kB
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_tiny_adamax_00001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6666666666666666

hushem_1x_deit_tiny_adamax_00001_fold4

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8218
  • Accuracy: 0.6667

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.3850 0.3333
1.4335 2.0 12 1.3341 0.3571
1.4335 3.0 18 1.2836 0.4286
1.2369 4.0 24 1.2256 0.5238
1.1106 5.0 30 1.1743 0.4762
1.1106 6.0 36 1.1379 0.5238
0.9897 7.0 42 1.1120 0.5952
0.9897 8.0 48 1.0871 0.6190
0.869 9.0 54 1.0617 0.5952
0.7919 10.0 60 1.0389 0.5952
0.7919 11.0 66 1.0206 0.5714
0.7005 12.0 72 1.0005 0.5714
0.7005 13.0 78 0.9876 0.5714
0.6273 14.0 84 0.9709 0.5952
0.5477 15.0 90 0.9546 0.5952
0.5477 16.0 96 0.9438 0.5714
0.4708 17.0 102 0.9277 0.5952
0.4708 18.0 108 0.9166 0.6190
0.4523 19.0 114 0.9086 0.6190
0.3797 20.0 120 0.9051 0.5952
0.3797 21.0 126 0.8956 0.6190
0.3458 22.0 132 0.8852 0.6190
0.3458 23.0 138 0.8841 0.6190
0.3057 24.0 144 0.8804 0.5952
0.2867 25.0 150 0.8683 0.6429
0.2867 26.0 156 0.8580 0.6667
0.2509 27.0 162 0.8515 0.6667
0.2509 28.0 168 0.8546 0.6429
0.2322 29.0 174 0.8500 0.6667
0.2064 30.0 180 0.8396 0.6667
0.2064 31.0 186 0.8363 0.6667
0.1928 32.0 192 0.8371 0.6667
0.1928 33.0 198 0.8332 0.6667
0.1767 34.0 204 0.8261 0.6667
0.1746 35.0 210 0.8249 0.6667
0.1746 36.0 216 0.8258 0.6667
0.1557 37.0 222 0.8248 0.6667
0.1557 38.0 228 0.8243 0.6667
0.1581 39.0 234 0.8225 0.6667
0.1477 40.0 240 0.8219 0.6667
0.1477 41.0 246 0.8217 0.6667
0.149 42.0 252 0.8218 0.6667
0.149 43.0 258 0.8218 0.6667
0.1403 44.0 264 0.8218 0.6667
0.146 45.0 270 0.8218 0.6667
0.146 46.0 276 0.8218 0.6667
0.1461 47.0 282 0.8218 0.6667
0.1461 48.0 288 0.8218 0.6667
0.1422 49.0 294 0.8218 0.6667
0.1494 50.0 300 0.8218 0.6667

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1