hkivancoral's picture
End of training
ba6ae17
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_tiny_adamax_00001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5121951219512195

hushem_1x_deit_tiny_adamax_00001_fold5

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9982
  • Accuracy: 0.5122

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.3816 0.2927
1.4331 2.0 12 1.3595 0.2195
1.4331 3.0 18 1.3006 0.2927
1.2071 4.0 24 1.2477 0.3415
1.0931 5.0 30 1.2218 0.3659
1.0931 6.0 36 1.1904 0.3415
0.9583 7.0 42 1.2070 0.3659
0.9583 8.0 48 1.1804 0.3415
0.875 9.0 54 1.1663 0.3415
0.7821 10.0 60 1.1729 0.3659
0.7821 11.0 66 1.1600 0.3659
0.7082 12.0 72 1.1535 0.3659
0.7082 13.0 78 1.1283 0.3902
0.5865 14.0 84 1.1050 0.4146
0.5549 15.0 90 1.0989 0.4146
0.5549 16.0 96 1.0902 0.4146
0.4748 17.0 102 1.0889 0.4146
0.4748 18.0 108 1.0670 0.4146
0.4005 19.0 114 1.0529 0.4146
0.3717 20.0 120 1.0514 0.4146
0.3717 21.0 126 1.0589 0.4146
0.3189 22.0 132 1.0546 0.4146
0.3189 23.0 138 1.0253 0.4390
0.2768 24.0 144 1.0205 0.4390
0.2632 25.0 150 1.0386 0.4146
0.2632 26.0 156 1.0297 0.4390
0.2284 27.0 162 1.0322 0.4634
0.2284 28.0 168 1.0102 0.4634
0.196 29.0 174 1.0015 0.4878
0.1861 30.0 180 1.0070 0.4634
0.1861 31.0 186 1.0149 0.4878
0.1711 32.0 192 1.0173 0.4878
0.1711 33.0 198 1.0083 0.4878
0.1508 34.0 204 1.0068 0.5122
0.1433 35.0 210 0.9998 0.5122
0.1433 36.0 216 0.9984 0.5122
0.1371 37.0 222 0.9985 0.5122
0.1371 38.0 228 0.9983 0.5122
0.1311 39.0 234 0.9983 0.5122
0.1245 40.0 240 0.9977 0.5122
0.1245 41.0 246 0.9980 0.5122
0.1273 42.0 252 0.9982 0.5122
0.1273 43.0 258 0.9982 0.5122
0.1185 44.0 264 0.9982 0.5122
0.1259 45.0 270 0.9982 0.5122
0.1259 46.0 276 0.9982 0.5122
0.1239 47.0 282 0.9982 0.5122
0.1239 48.0 288 0.9982 0.5122
0.1264 49.0 294 0.9982 0.5122
0.1234 50.0 300 0.9982 0.5122

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1