metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_1x_deit_tiny_adamax_001_fold1
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.5777777777777777
hushem_1x_deit_tiny_adamax_001_fold1
This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.8804
- Accuracy: 0.5778
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 6 | 1.3266 | 0.3778 |
1.1956 | 2.0 | 12 | 1.1674 | 0.4667 |
1.1956 | 3.0 | 18 | 1.1849 | 0.4889 |
0.4784 | 4.0 | 24 | 1.2723 | 0.4667 |
0.1535 | 5.0 | 30 | 1.2811 | 0.4889 |
0.1535 | 6.0 | 36 | 1.5643 | 0.4667 |
0.0259 | 7.0 | 42 | 1.3477 | 0.5556 |
0.0259 | 8.0 | 48 | 1.7927 | 0.4889 |
0.0051 | 9.0 | 54 | 1.7277 | 0.5556 |
0.0016 | 10.0 | 60 | 1.5795 | 0.6222 |
0.0016 | 11.0 | 66 | 1.6103 | 0.6 |
0.0008 | 12.0 | 72 | 1.7043 | 0.5778 |
0.0008 | 13.0 | 78 | 1.7832 | 0.5778 |
0.0005 | 14.0 | 84 | 1.8224 | 0.5778 |
0.0004 | 15.0 | 90 | 1.8294 | 0.5778 |
0.0004 | 16.0 | 96 | 1.8185 | 0.5778 |
0.0004 | 17.0 | 102 | 1.8150 | 0.5778 |
0.0004 | 18.0 | 108 | 1.8206 | 0.5778 |
0.0004 | 19.0 | 114 | 1.8349 | 0.5778 |
0.0003 | 20.0 | 120 | 1.8491 | 0.5778 |
0.0003 | 21.0 | 126 | 1.8590 | 0.5778 |
0.0003 | 22.0 | 132 | 1.8667 | 0.5556 |
0.0003 | 23.0 | 138 | 1.8640 | 0.5556 |
0.0003 | 24.0 | 144 | 1.8624 | 0.5556 |
0.0003 | 25.0 | 150 | 1.8632 | 0.5778 |
0.0003 | 26.0 | 156 | 1.8651 | 0.5556 |
0.0003 | 27.0 | 162 | 1.8642 | 0.5778 |
0.0003 | 28.0 | 168 | 1.8659 | 0.5778 |
0.0003 | 29.0 | 174 | 1.8666 | 0.5778 |
0.0003 | 30.0 | 180 | 1.8680 | 0.5778 |
0.0003 | 31.0 | 186 | 1.8684 | 0.5778 |
0.0002 | 32.0 | 192 | 1.8677 | 0.5778 |
0.0002 | 33.0 | 198 | 1.8709 | 0.5778 |
0.0002 | 34.0 | 204 | 1.8723 | 0.5778 |
0.0002 | 35.0 | 210 | 1.8730 | 0.5778 |
0.0002 | 36.0 | 216 | 1.8757 | 0.5778 |
0.0002 | 37.0 | 222 | 1.8766 | 0.5778 |
0.0002 | 38.0 | 228 | 1.8780 | 0.5778 |
0.0002 | 39.0 | 234 | 1.8793 | 0.5778 |
0.0002 | 40.0 | 240 | 1.8801 | 0.5778 |
0.0002 | 41.0 | 246 | 1.8804 | 0.5778 |
0.0002 | 42.0 | 252 | 1.8804 | 0.5778 |
0.0002 | 43.0 | 258 | 1.8804 | 0.5778 |
0.0002 | 44.0 | 264 | 1.8804 | 0.5778 |
0.0002 | 45.0 | 270 | 1.8804 | 0.5778 |
0.0002 | 46.0 | 276 | 1.8804 | 0.5778 |
0.0002 | 47.0 | 282 | 1.8804 | 0.5778 |
0.0002 | 48.0 | 288 | 1.8804 | 0.5778 |
0.0002 | 49.0 | 294 | 1.8804 | 0.5778 |
0.0002 | 50.0 | 300 | 1.8804 | 0.5778 |
Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1