hkivancoral's picture
End of training
3e6138e
|
raw
history blame
4.82 kB
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_tiny_adamax_001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6190476190476191

hushem_1x_deit_tiny_adamax_001_fold4

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 2.7093
  • Accuracy: 0.6190

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.4186 0.2619
1.7828 2.0 12 1.5668 0.2381
1.7828 3.0 18 1.3464 0.2619
1.4289 4.0 24 1.2387 0.2857
1.3071 5.0 30 1.0086 0.5952
1.3071 6.0 36 1.1662 0.3333
1.1964 7.0 42 1.2853 0.4286
1.1964 8.0 48 1.2187 0.3333
1.0152 9.0 54 0.8730 0.6190
0.7906 10.0 60 0.9343 0.5714
0.7906 11.0 66 1.6411 0.5
0.5517 12.0 72 2.1397 0.3095
0.5517 13.0 78 1.0282 0.5476
0.856 14.0 84 1.1613 0.4762
0.4273 15.0 90 1.2606 0.5476
0.4273 16.0 96 1.4223 0.5952
0.2649 17.0 102 1.5904 0.6429
0.2649 18.0 108 2.3346 0.5714
0.1584 19.0 114 2.4890 0.5476
0.1352 20.0 120 2.2551 0.5476
0.1352 21.0 126 1.7877 0.5714
0.1303 22.0 132 2.3533 0.5714
0.1303 23.0 138 2.3850 0.5714
0.0457 24.0 144 2.3656 0.6667
0.0031 25.0 150 2.3202 0.6190
0.0031 26.0 156 2.4368 0.6667
0.0014 27.0 162 2.5601 0.6429
0.0014 28.0 168 2.6475 0.6667
0.0004 29.0 174 2.7011 0.6667
0.0002 30.0 180 2.7227 0.6429
0.0002 31.0 186 2.7312 0.6429
0.0002 32.0 192 2.7259 0.6429
0.0002 33.0 198 2.7193 0.6429
0.0001 34.0 204 2.7128 0.6429
0.0001 35.0 210 2.7095 0.6429
0.0001 36.0 216 2.7084 0.6429
0.0001 37.0 222 2.7078 0.6429
0.0001 38.0 228 2.7079 0.6429
0.0001 39.0 234 2.7085 0.6429
0.0001 40.0 240 2.7091 0.6190
0.0001 41.0 246 2.7093 0.6190
0.0001 42.0 252 2.7093 0.6190
0.0001 43.0 258 2.7093 0.6190
0.0001 44.0 264 2.7093 0.6190
0.0001 45.0 270 2.7093 0.6190
0.0001 46.0 276 2.7093 0.6190
0.0001 47.0 282 2.7093 0.6190
0.0001 48.0 288 2.7093 0.6190
0.0001 49.0 294 2.7093 0.6190
0.0001 50.0 300 2.7093 0.6190

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1