metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_1x_deit_tiny_rms_001_fold1
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.28888888888888886
hushem_1x_deit_tiny_rms_001_fold1
This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.5885
- Accuracy: 0.2889
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 6 | 4.1632 | 0.2444 |
4.2585 | 2.0 | 12 | 2.5063 | 0.2444 |
4.2585 | 3.0 | 18 | 1.7281 | 0.2444 |
1.7534 | 4.0 | 24 | 1.3946 | 0.2444 |
1.5909 | 5.0 | 30 | 1.5054 | 0.2444 |
1.5909 | 6.0 | 36 | 1.6818 | 0.2444 |
1.5201 | 7.0 | 42 | 1.5863 | 0.3556 |
1.5201 | 8.0 | 48 | 1.5570 | 0.2667 |
1.4849 | 9.0 | 54 | 1.5043 | 0.4667 |
1.4118 | 10.0 | 60 | 1.4204 | 0.2444 |
1.4118 | 11.0 | 66 | 1.4708 | 0.2667 |
1.4258 | 12.0 | 72 | 1.4115 | 0.2444 |
1.4258 | 13.0 | 78 | 1.5806 | 0.2667 |
1.444 | 14.0 | 84 | 1.3600 | 0.3111 |
1.4369 | 15.0 | 90 | 1.4011 | 0.2667 |
1.4369 | 16.0 | 96 | 1.2994 | 0.4889 |
1.4072 | 17.0 | 102 | 1.3804 | 0.4222 |
1.4072 | 18.0 | 108 | 2.3179 | 0.2444 |
1.3585 | 19.0 | 114 | 1.4391 | 0.3111 |
1.3358 | 20.0 | 120 | 2.0579 | 0.2667 |
1.3358 | 21.0 | 126 | 1.3519 | 0.3333 |
1.432 | 22.0 | 132 | 1.4609 | 0.2889 |
1.432 | 23.0 | 138 | 2.1987 | 0.2444 |
1.3028 | 24.0 | 144 | 1.5480 | 0.2444 |
1.282 | 25.0 | 150 | 1.3898 | 0.2889 |
1.282 | 26.0 | 156 | 1.2611 | 0.2444 |
1.2714 | 27.0 | 162 | 1.7016 | 0.2444 |
1.2714 | 28.0 | 168 | 1.3743 | 0.2889 |
1.2632 | 29.0 | 174 | 1.4836 | 0.3778 |
1.176 | 30.0 | 180 | 1.3073 | 0.4 |
1.176 | 31.0 | 186 | 1.4096 | 0.2667 |
1.1646 | 32.0 | 192 | 1.4023 | 0.4222 |
1.1646 | 33.0 | 198 | 1.4449 | 0.4 |
1.1055 | 34.0 | 204 | 1.6514 | 0.2889 |
1.1692 | 35.0 | 210 | 1.4679 | 0.3111 |
1.1692 | 36.0 | 216 | 1.6234 | 0.2667 |
1.1228 | 37.0 | 222 | 1.6770 | 0.3333 |
1.1228 | 38.0 | 228 | 1.5646 | 0.2667 |
1.0125 | 39.0 | 234 | 1.5851 | 0.2889 |
1.0301 | 40.0 | 240 | 1.5653 | 0.2889 |
1.0301 | 41.0 | 246 | 1.5924 | 0.2667 |
1.0049 | 42.0 | 252 | 1.5885 | 0.2889 |
1.0049 | 43.0 | 258 | 1.5885 | 0.2889 |
1.0088 | 44.0 | 264 | 1.5885 | 0.2889 |
0.9822 | 45.0 | 270 | 1.5885 | 0.2889 |
0.9822 | 46.0 | 276 | 1.5885 | 0.2889 |
0.9822 | 47.0 | 282 | 1.5885 | 0.2889 |
0.9822 | 48.0 | 288 | 1.5885 | 0.2889 |
0.9898 | 49.0 | 294 | 1.5885 | 0.2889 |
0.9935 | 50.0 | 300 | 1.5885 | 0.2889 |
Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1