metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_1x_deit_tiny_sgd_0001_fold1
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.3333333333333333
hushem_1x_deit_tiny_sgd_0001_fold1
This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.5492
- Accuracy: 0.3333
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 6 | 1.6732 | 0.2667 |
1.7181 | 2.0 | 12 | 1.6650 | 0.2667 |
1.7181 | 3.0 | 18 | 1.6576 | 0.2667 |
1.6899 | 4.0 | 24 | 1.6505 | 0.2667 |
1.7151 | 5.0 | 30 | 1.6435 | 0.2889 |
1.7151 | 6.0 | 36 | 1.6372 | 0.2889 |
1.6507 | 7.0 | 42 | 1.6312 | 0.2889 |
1.6507 | 8.0 | 48 | 1.6255 | 0.2889 |
1.626 | 9.0 | 54 | 1.6199 | 0.2889 |
1.6566 | 10.0 | 60 | 1.6145 | 0.2889 |
1.6566 | 11.0 | 66 | 1.6095 | 0.2889 |
1.6122 | 12.0 | 72 | 1.6048 | 0.2889 |
1.6122 | 13.0 | 78 | 1.6001 | 0.2889 |
1.7016 | 14.0 | 84 | 1.5960 | 0.2889 |
1.6075 | 15.0 | 90 | 1.5922 | 0.2889 |
1.6075 | 16.0 | 96 | 1.5886 | 0.2889 |
1.5839 | 17.0 | 102 | 1.5852 | 0.2889 |
1.5839 | 18.0 | 108 | 1.5821 | 0.3111 |
1.589 | 19.0 | 114 | 1.5790 | 0.3111 |
1.5539 | 20.0 | 120 | 1.5762 | 0.3111 |
1.5539 | 21.0 | 126 | 1.5736 | 0.3111 |
1.5431 | 22.0 | 132 | 1.5710 | 0.3111 |
1.5431 | 23.0 | 138 | 1.5686 | 0.3111 |
1.58 | 24.0 | 144 | 1.5665 | 0.3111 |
1.5398 | 25.0 | 150 | 1.5646 | 0.3333 |
1.5398 | 26.0 | 156 | 1.5627 | 0.3333 |
1.5415 | 27.0 | 162 | 1.5611 | 0.3333 |
1.5415 | 28.0 | 168 | 1.5596 | 0.3333 |
1.5548 | 29.0 | 174 | 1.5581 | 0.3333 |
1.5423 | 30.0 | 180 | 1.5567 | 0.3333 |
1.5423 | 31.0 | 186 | 1.5553 | 0.3333 |
1.5803 | 32.0 | 192 | 1.5542 | 0.3333 |
1.5803 | 33.0 | 198 | 1.5532 | 0.3333 |
1.4986 | 34.0 | 204 | 1.5522 | 0.3333 |
1.5635 | 35.0 | 210 | 1.5514 | 0.3333 |
1.5635 | 36.0 | 216 | 1.5508 | 0.3333 |
1.5318 | 37.0 | 222 | 1.5503 | 0.3333 |
1.5318 | 38.0 | 228 | 1.5499 | 0.3333 |
1.4575 | 39.0 | 234 | 1.5495 | 0.3333 |
1.527 | 40.0 | 240 | 1.5493 | 0.3333 |
1.527 | 41.0 | 246 | 1.5492 | 0.3333 |
1.5482 | 42.0 | 252 | 1.5492 | 0.3333 |
1.5482 | 43.0 | 258 | 1.5492 | 0.3333 |
1.5545 | 44.0 | 264 | 1.5492 | 0.3333 |
1.5122 | 45.0 | 270 | 1.5492 | 0.3333 |
1.5122 | 46.0 | 276 | 1.5492 | 0.3333 |
1.5284 | 47.0 | 282 | 1.5492 | 0.3333 |
1.5284 | 48.0 | 288 | 1.5492 | 0.3333 |
1.5117 | 49.0 | 294 | 1.5492 | 0.3333 |
1.5484 | 50.0 | 300 | 1.5492 | 0.3333 |
Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1