metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_1x_deit_tiny_sgd_0001_fold2
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.2
hushem_1x_deit_tiny_sgd_0001_fold2
This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.5785
- Accuracy: 0.2
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 6 | 1.7159 | 0.2222 |
1.7117 | 2.0 | 12 | 1.7073 | 0.2222 |
1.7117 | 3.0 | 18 | 1.6994 | 0.2222 |
1.6883 | 4.0 | 24 | 1.6919 | 0.2222 |
1.6982 | 5.0 | 30 | 1.6843 | 0.2222 |
1.6982 | 6.0 | 36 | 1.6776 | 0.2222 |
1.6419 | 7.0 | 42 | 1.6712 | 0.2222 |
1.6419 | 8.0 | 48 | 1.6649 | 0.2222 |
1.6108 | 9.0 | 54 | 1.6588 | 0.2222 |
1.6345 | 10.0 | 60 | 1.6530 | 0.2222 |
1.6345 | 11.0 | 66 | 1.6473 | 0.2222 |
1.6108 | 12.0 | 72 | 1.6421 | 0.2222 |
1.6108 | 13.0 | 78 | 1.6369 | 0.2 |
1.6666 | 14.0 | 84 | 1.6323 | 0.2 |
1.6138 | 15.0 | 90 | 1.6282 | 0.2 |
1.6138 | 16.0 | 96 | 1.6241 | 0.2 |
1.5738 | 17.0 | 102 | 1.6203 | 0.2 |
1.5738 | 18.0 | 108 | 1.6167 | 0.2 |
1.5952 | 19.0 | 114 | 1.6131 | 0.2 |
1.555 | 20.0 | 120 | 1.6099 | 0.2 |
1.555 | 21.0 | 126 | 1.6070 | 0.2 |
1.5267 | 22.0 | 132 | 1.6040 | 0.2 |
1.5267 | 23.0 | 138 | 1.6012 | 0.2 |
1.5686 | 24.0 | 144 | 1.5988 | 0.2 |
1.5444 | 25.0 | 150 | 1.5966 | 0.2 |
1.5444 | 26.0 | 156 | 1.5944 | 0.2 |
1.544 | 27.0 | 162 | 1.5926 | 0.2 |
1.544 | 28.0 | 168 | 1.5907 | 0.2 |
1.5375 | 29.0 | 174 | 1.5889 | 0.2 |
1.5441 | 30.0 | 180 | 1.5873 | 0.2 |
1.5441 | 31.0 | 186 | 1.5857 | 0.2 |
1.5614 | 32.0 | 192 | 1.5845 | 0.2 |
1.5614 | 33.0 | 198 | 1.5832 | 0.2 |
1.5093 | 34.0 | 204 | 1.5821 | 0.2 |
1.5478 | 35.0 | 210 | 1.5812 | 0.2 |
1.5478 | 36.0 | 216 | 1.5804 | 0.2 |
1.5301 | 37.0 | 222 | 1.5798 | 0.2 |
1.5301 | 38.0 | 228 | 1.5793 | 0.2 |
1.4582 | 39.0 | 234 | 1.5789 | 0.2 |
1.5151 | 40.0 | 240 | 1.5786 | 0.2 |
1.5151 | 41.0 | 246 | 1.5785 | 0.2 |
1.5298 | 42.0 | 252 | 1.5785 | 0.2 |
1.5298 | 43.0 | 258 | 1.5785 | 0.2 |
1.548 | 44.0 | 264 | 1.5785 | 0.2 |
1.5172 | 45.0 | 270 | 1.5785 | 0.2 |
1.5172 | 46.0 | 276 | 1.5785 | 0.2 |
1.528 | 47.0 | 282 | 1.5785 | 0.2 |
1.528 | 48.0 | 288 | 1.5785 | 0.2 |
1.4968 | 49.0 | 294 | 1.5785 | 0.2 |
1.5413 | 50.0 | 300 | 1.5785 | 0.2 |
Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1